First, we simplify the denominators:
15y−10=5(3y−2) 27y3−54y2+36y−8=(3y)3−3(3y)2(2)+3(3y)(22)−23=(3y−2)3 18y2−24y+8=2(9y2−12y+4)=2(3y−2)2 Now the equation becomes:
5(3y−2)1−(3y−2)35−y=2(3y−2)21.2y−1 Multiply both sides by 10(3y−2)3: 2(3y−2)2−10(5−y)=5(1.2y−1)(3y−2) 2(9y2−12y+4)−50+10y=5(3.6y2−2.4y−3y+2) 18y2−24y+8−50+10y=5(3.6y2−5.4y+2) 18y2−14y−42=18y2−27y+10 −14y−42=−27y+10 27y−14y=10+42 y=1352 We need to check if y=4 is a valid solution by checking if the denominators are zero: 15y−10=15(4)−10=60−10=50=0 27y3−54y2+36y−8=(3(4)−2)3=(12−2)3=103=1000=0 18y2−24y+8=2(3y−2)2=2(3(4)−2)2=2(10)2=200=0