We need to solve the following equation for $y$: $\frac{1}{15y-10} - \frac{5-y}{27y^3 - 54y^2 + 36y - 8} = \frac{1.2y - 1}{18y^2 - 24y + 8}$.

AlgebraEquation SolvingRational EquationsPolynomial Factorization
2025/5/25

1. Problem Description

We need to solve the following equation for yy:
115y105y27y354y2+36y8=1.2y118y224y+8\frac{1}{15y-10} - \frac{5-y}{27y^3 - 54y^2 + 36y - 8} = \frac{1.2y - 1}{18y^2 - 24y + 8}.

2. Solution Steps

First, we simplify the denominators:
15y10=5(3y2)15y - 10 = 5(3y - 2)
27y354y2+36y8=(3y)33(3y)2(2)+3(3y)(22)23=(3y2)327y^3 - 54y^2 + 36y - 8 = (3y)^3 - 3(3y)^2(2) + 3(3y)(2^2) - 2^3 = (3y-2)^3
18y224y+8=2(9y212y+4)=2(3y2)218y^2 - 24y + 8 = 2(9y^2 - 12y + 4) = 2(3y-2)^2
Now the equation becomes:
15(3y2)5y(3y2)3=1.2y12(3y2)2\frac{1}{5(3y-2)} - \frac{5-y}{(3y-2)^3} = \frac{1.2y - 1}{2(3y-2)^2}
Multiply both sides by 10(3y2)310(3y-2)^3:
2(3y2)210(5y)=5(1.2y1)(3y2)2(3y-2)^2 - 10(5-y) = 5(1.2y - 1)(3y-2)
2(9y212y+4)50+10y=5(3.6y22.4y3y+2)2(9y^2 - 12y + 4) - 50 + 10y = 5(3.6y^2 - 2.4y - 3y + 2)
18y224y+850+10y=5(3.6y25.4y+2)18y^2 - 24y + 8 - 50 + 10y = 5(3.6y^2 - 5.4y + 2)
18y214y42=18y227y+1018y^2 - 14y - 42 = 18y^2 - 27y + 10
14y42=27y+10-14y - 42 = -27y + 10
27y14y=10+4227y - 14y = 10 + 42
13y=5213y = 52
y=5213y = \frac{52}{13}
y=4y = 4
We need to check if y=4y=4 is a valid solution by checking if the denominators are zero:
15y10=15(4)10=6010=50015y-10 = 15(4)-10 = 60-10 = 50 \ne 0
27y354y2+36y8=(3(4)2)3=(122)3=103=1000027y^3 - 54y^2 + 36y - 8 = (3(4)-2)^3 = (12-2)^3 = 10^3 = 1000 \ne 0
18y224y+8=2(3y2)2=2(3(4)2)2=2(10)2=200018y^2 - 24y + 8 = 2(3y-2)^2 = 2(3(4)-2)^2 = 2(10)^2 = 200 \ne 0

3. Final Answer

y=4y = 4

Related problems in "Algebra"

The problem is about the quadratic function $y = -2x^2 + (a+3)x + a - 3$. (1) Find the condition on ...

Quadratic FunctionsDiscriminantVieta's FormulasVertex of ParabolaIsosceles Right Triangle
2025/6/10

The problem consists of several sub-problems covering various topics in algebra. These include expre...

Scientific NotationEngineering NotationSimplificationPolynomial Remainder TheoremSimultaneous EquationsLogarithmic EquationsLinear EquationsGradientY-interceptEquation of a LinePartial Fractions
2025/6/10

We are given four problems: a) i. Use the vertical line test to show that $f(x) = \sqrt{x}$ is a fun...

FunctionsVertical Line TestRangeLinear FunctionsInverse FunctionsAlgebraic Manipulation
2025/6/10

We are given the equation $x^3 + 2x^2y - x^2 + 2xy + 4y^2 - 2y = 44$. The problem asks us to factor...

Polynomial FactorizationEquation SolvingInteger Properties
2025/6/10

We are given the equation $f(x) - g(x) = 3ax^2 + 2(a+1)x + a + 1$. We are also given that $a = \fra...

Quadratic EquationsParabolasIntersection of CurvesSystems of Equations
2025/6/10

Given that $f(x) - g(x) = 3ax^2 + 2(a+1)x + a+1$, we need to find the range of values for $a$ such t...

Quadratic InequalitiesQuadratic EquationsDiscriminantParabolasIntersection Points
2025/6/10

The problem is a fill-in-the-blank question. Given that for all real numbers $x$, $f(x) > g(x)$, det...

InequalitiesQuadratic FunctionsIntersection of CurvesProblem Solving
2025/6/10

The problem gives two quadratic functions $f(x) = 2ax^2 + (2a+1)x + a$ and $g(x) = -ax^2 - x - 1$. (...

Quadratic EquationsDiscriminantInequalitiesParabolas
2025/6/10

We are given a quadratic equation to solve: $x^2 - 6x + 9 = 0$. We need to find the value(s) of $x$ ...

Quadratic EquationsFactoringRoots of Equations
2025/6/10

We are given a sequence of numbers: $1, \frac{2}{2^{2-1}}, \frac{3}{3^{2-2}}, \frac{4}{4^{2-3}}, ......

SequencesSeriesExponentsGeneral Term
2025/6/10