Solve for $x$ in the equation $\frac{\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{5}}}{\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{5}}} = \frac{\sqrt{10} - 1}{x}$.

AlgebraEquationsSimplificationRadicalsRationalization
2025/5/25

1. Problem Description

Solve for xx in the equation 121512+15=101x\frac{\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{5}}}{\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{5}}} = \frac{\sqrt{10} - 1}{x}.

2. Solution Steps

First, simplify the left-hand side of the equation. We can simplify the numerator and the denominator separately and then divide them.
Numerator:
1215=5225=5210\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{5}} = \frac{\sqrt{5} - \sqrt{2}}{\sqrt{2}\sqrt{5}} = \frac{\sqrt{5} - \sqrt{2}}{\sqrt{10}}
Denominator:
12+15=5+225=5+210\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{5}} = \frac{\sqrt{5} + \sqrt{2}}{\sqrt{2}\sqrt{5}} = \frac{\sqrt{5} + \sqrt{2}}{\sqrt{10}}
Now, divide the numerator by the denominator:
52105+210=5210105+2=525+2\frac{\frac{\sqrt{5} - \sqrt{2}}{\sqrt{10}}}{\frac{\sqrt{5} + \sqrt{2}}{\sqrt{10}}} = \frac{\sqrt{5} - \sqrt{2}}{\sqrt{10}} \cdot \frac{\sqrt{10}}{\sqrt{5} + \sqrt{2}} = \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} + \sqrt{2}}
Now we need to rationalize the denominator by multiplying the numerator and the denominator by the conjugate of the denominator, which is 52\sqrt{5} - \sqrt{2}:
525+2 جذر5252=(52)2(5)2(2)2=5210+252=72103\frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} + \sqrt{2}} \cdot \frac{\ جذر5 - \sqrt{2}}{\sqrt{5} - \sqrt{2}} = \frac{(\sqrt{5} - \sqrt{2})^2}{(\sqrt{5})^2 - (\sqrt{2})^2} = \frac{5 - 2\sqrt{10} + 2}{5 - 2} = \frac{7 - 2\sqrt{10}}{3}
We are given that
72103=101x\frac{7 - 2\sqrt{10}}{3} = \frac{\sqrt{10} - 1}{x}.
This is incorrect, based on the original problem, we have the simplified equation:
525+2=101x\frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} + \sqrt{2}} = \frac{\sqrt{10} - 1}{x}
Rationalizing the left-hand side:
525+2=(52)(52)(5+2)(52)=5210+252=72103\frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} + \sqrt{2}} = \frac{(\sqrt{5} - \sqrt{2})(\sqrt{5} - \sqrt{2})}{(\sqrt{5} + \sqrt{2})(\sqrt{5} - \sqrt{2})} = \frac{5 - 2\sqrt{10} + 2}{5 - 2} = \frac{7 - 2\sqrt{10}}{3}
We are given:
72103=101x\frac{7 - 2\sqrt{10}}{3} = \frac{\sqrt{10} - 1}{x}
x=3(101)7210x = \frac{3(\sqrt{10} - 1)}{7 - 2\sqrt{10}}
Now we rationalize the denominator:
x=3(101)(7+210)(7210)(7+210)=3(710+207210)4940=3(510+13)9=510+133x = \frac{3(\sqrt{10} - 1)(7 + 2\sqrt{10})}{(7 - 2\sqrt{10})(7 + 2\sqrt{10})} = \frac{3(7\sqrt{10} + 20 - 7 - 2\sqrt{10})}{49 - 40} = \frac{3(5\sqrt{10} + 13)}{9} = \frac{5\sqrt{10} + 13}{3}
This looks wrong. Let's double-check the problem statement.
Let's go back to
525+2=101x\frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}+\sqrt{2}} = \frac{\sqrt{10}-1}{x}
x=(101)(5+2)52=50+205252=52+255252=42+552=(42+5)(5+2)(52)(5+2)=410+8+5+1052=510+133x = \frac{(\sqrt{10}-1)(\sqrt{5}+\sqrt{2})}{\sqrt{5}-\sqrt{2}} = \frac{\sqrt{50}+\sqrt{20}-\sqrt{5}-\sqrt{2}}{\sqrt{5}-\sqrt{2}} = \frac{5\sqrt{2}+2\sqrt{5}-\sqrt{5}-\sqrt{2}}{\sqrt{5}-\sqrt{2}} = \frac{4\sqrt{2}+\sqrt{5}}{\sqrt{5}-\sqrt{2}} = \frac{(4\sqrt{2}+\sqrt{5})(\sqrt{5}+\sqrt{2})}{(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})} = \frac{4\sqrt{10}+8+5+\sqrt{10}}{5-2} = \frac{5\sqrt{10}+13}{3}

3. Final Answer

x=510+133x = \frac{5\sqrt{10} + 13}{3}

Related problems in "Algebra"

The problem is about the quadratic function $y = -2x^2 + (a+3)x + a - 3$. (1) Find the condition on ...

Quadratic FunctionsDiscriminantVieta's FormulasVertex of ParabolaIsosceles Right Triangle
2025/6/10

The problem consists of several sub-problems covering various topics in algebra. These include expre...

Scientific NotationEngineering NotationSimplificationPolynomial Remainder TheoremSimultaneous EquationsLogarithmic EquationsLinear EquationsGradientY-interceptEquation of a LinePartial Fractions
2025/6/10

We are given four problems: a) i. Use the vertical line test to show that $f(x) = \sqrt{x}$ is a fun...

FunctionsVertical Line TestRangeLinear FunctionsInverse FunctionsAlgebraic Manipulation
2025/6/10

We are given the equation $x^3 + 2x^2y - x^2 + 2xy + 4y^2 - 2y = 44$. The problem asks us to factor...

Polynomial FactorizationEquation SolvingInteger Properties
2025/6/10

We are given the equation $f(x) - g(x) = 3ax^2 + 2(a+1)x + a + 1$. We are also given that $a = \fra...

Quadratic EquationsParabolasIntersection of CurvesSystems of Equations
2025/6/10

Given that $f(x) - g(x) = 3ax^2 + 2(a+1)x + a+1$, we need to find the range of values for $a$ such t...

Quadratic InequalitiesQuadratic EquationsDiscriminantParabolasIntersection Points
2025/6/10

The problem is a fill-in-the-blank question. Given that for all real numbers $x$, $f(x) > g(x)$, det...

InequalitiesQuadratic FunctionsIntersection of CurvesProblem Solving
2025/6/10

The problem gives two quadratic functions $f(x) = 2ax^2 + (2a+1)x + a$ and $g(x) = -ax^2 - x - 1$. (...

Quadratic EquationsDiscriminantInequalitiesParabolas
2025/6/10

We are given a quadratic equation to solve: $x^2 - 6x + 9 = 0$. We need to find the value(s) of $x$ ...

Quadratic EquationsFactoringRoots of Equations
2025/6/10

We are given a sequence of numbers: $1, \frac{2}{2^{2-1}}, \frac{3}{3^{2-2}}, \frac{4}{4^{2-3}}, ......

SequencesSeriesExponentsGeneral Term
2025/6/10