First, simplify the left side of the equation.
Combine the first two terms:
34x−32x−4=34x−(2x−4)=34x−2x+4=32x+4 Next, simplify the numerator of the fraction:
43x−5−65x−3=123(3x−5)−2(5x−3)=129x−15−10x+6=12−x−9 Next, simplify the denominator of the fraction:
94x−3−42x−5=364(4x−3)−9(2x−5)=3616x−12−18x+45=36−2x+33 Now, we have the equation:
32x+4+36−2x+3312−x−9=32x Simplify the fraction:
36−2x+3312−x−9=12−x−9⋅−2x+3336=−2x+33(−x−9)3=−2x+33−3x−27=2x−333x+27 Substitute back into the original equation:
32x+4+2x−333x+27=32x Subtract 32x+4 from both sides: 2x−333x+27=32x−32x+4=32x−(2x+4)=32x−2x−4=3−4 Cross-multiply:
3(3x+27)=−4(2x−33) 9x+81=−8x+132 17x=132−81 x=1751 Now we check if x=3 is a valid solution by checking the denominator 94x−3−42x−5 and 2x−33. 94(3)−3−42(3)−5=912−3−46−5=99−41=1−41=43=0. Also, 2x−33=2(3)−33=6−33=−27=0. Thus x=3 is a valid solution.