Solve the equation $(2x - 3b)^2 = (x + 6b)(x - 9b)(8x - 12b) - (3b)^3$ for $x$.

AlgebraCubic EquationsPolynomial EquationsVariable Substitution
2025/5/25

1. Problem Description

Solve the equation (2x3b)2=(x+6b)(x9b)(8x12b)(3b)3(2x - 3b)^2 = (x + 6b)(x - 9b)(8x - 12b) - (3b)^3 for xx.

2. Solution Steps

First, expand the left side of the equation:
(2x3b)2=(2x)22(2x)(3b)+(3b)2=4x212bx+9b2(2x - 3b)^2 = (2x)^2 - 2(2x)(3b) + (3b)^2 = 4x^2 - 12bx + 9b^2
Next, expand the right side of the equation:
(x+6b)(x9b)=x29bx+6bx54b2=x23bx54b2(x + 6b)(x - 9b) = x^2 - 9bx + 6bx - 54b^2 = x^2 - 3bx - 54b^2
(x23bx54b2)(8x12b)=8x312bx224bx2+36b2x432b2x+648b3=8x336bx2396b2x+648b3(x^2 - 3bx - 54b^2)(8x - 12b) = 8x^3 - 12bx^2 - 24bx^2 + 36b^2x - 432b^2x + 648b^3 = 8x^3 - 36bx^2 - 396b^2x + 648b^3
(3b)3=27b3(3b)^3 = 27b^3
So the right side of the equation becomes:
8x336bx2396b2x+648b327b3=8x336bx2396b2x+621b38x^3 - 36bx^2 - 396b^2x + 648b^3 - 27b^3 = 8x^3 - 36bx^2 - 396b^2x + 621b^3
Now, the equation is:
4x212bx+9b2=8x336bx2396b2x+621b34x^2 - 12bx + 9b^2 = 8x^3 - 36bx^2 - 396b^2x + 621b^3
Rearrange the equation:
8x336bx24x2396b2x+12bx+621b39b2=08x^3 - 36bx^2 - 4x^2 - 396b^2x + 12bx + 621b^3 - 9b^2 = 0
8x3(36b+4)x2+(12b396b2)x+(621b39b2)=08x^3 - (36b + 4)x^2 + (12b - 396b^2)x + (621b^3 - 9b^2) = 0
However, note that 8x12b=4(2x3b)8x - 12b = 4(2x - 3b). Thus, the equation becomes:
(2x3b)2=(x+6b)(x9b)4(2x3b)(3b)3(2x - 3b)^2 = (x + 6b)(x - 9b)4(2x - 3b) - (3b)^3
(2x3b)2(x+6b)(x9b)4(2x3b)+(3b)3=0(2x - 3b)^2 - (x + 6b)(x - 9b)4(2x - 3b) + (3b)^3 = 0
Let 2x3b=y2x - 3b = y. Then 2x=y+3b2x = y + 3b, x=y2+3b2x = \frac{y}{2} + \frac{3b}{2}
(y2+3b2+6b)(y2+3b29b)=(y2+15b2)(y215b2)=y24225b24(\frac{y}{2} + \frac{3b}{2} + 6b)(\frac{y}{2} + \frac{3b}{2} - 9b) = (\frac{y}{2} + \frac{15b}{2})(\frac{y}{2} - \frac{15b}{2}) = \frac{y^2}{4} - \frac{225b^2}{4}
Thus, the equation becomes:
y24(y24225b24)y+27b3=0y^2 - 4(\frac{y^2}{4} - \frac{225b^2}{4})y + 27b^3 = 0
y2(y2225b2)4y+27b3=0y^2 - (y^2 - 225b^2)4y + 27b^3 = 0
y2(4y3900b2y)+27b3=0y^2 - (4y^3 - 900b^2 y) + 27b^3 = 0
4y3+y2+900b2y+27b3=0-4y^3 + y^2 + 900b^2 y + 27b^3 = 0
y=9by=9b is a solution because 4(9b)3+(9b)2+900b2(9b)+27b3=2916b3+81b2+8100b3+27b3=5211b3+81b20-4(9b)^3 + (9b)^2 + 900b^2(9b) + 27b^3 = -2916b^3 + 81b^2 + 8100b^3 + 27b^3 = 5211b^3+81b^2 \ne 0
Let's rearrange the initial equation:
4x212bx+9b2=(x+6b)(x9b)(8x12b)27b34x^2 - 12bx + 9b^2 = (x + 6b)(x - 9b)(8x - 12b) - 27b^3
4x212bx+9b2=4(x+6b)(x9b)(2x3b)27b34x^2 - 12bx + 9b^2 = 4(x + 6b)(x - 9b)(2x - 3b) - 27b^3
If x=32bx = \frac{3}{2}b then 4(94b2)12b(32b)+9b2=9b218b2+9b2=04(\frac{9}{4}b^2) - 12b(\frac{3}{2}b) + 9b^2 = 9b^2 - 18b^2 + 9b^2 = 0
and (x+6b)(x9b)(8x12b)27b3=(3/2b+6b)(3/2b9b)(12b12b)27b3=(15/2b)(15/2b)(0)27b3=27b3(x+6b)(x-9b)(8x-12b) - 27b^3 = (3/2 b + 6b)(3/2b - 9b)(12b-12b)-27b^3 = (15/2 b)(-15/2b)(0) -27b^3 = -27b^3
Thus, x=32bx=\frac{3}{2}b implies that 0=27b30=-27b^3, so b=0b=0, in which case xx can be any value.
Let 2x3b=02x - 3b = 0, so x=32bx = \frac{3}{2}b. If x=6bx = 6b, (x+6b)(x9b)(8x12b)(3b)3=(12b)(3b)(36b)27b3=1296b327b3=1323b3(x + 6b)(x - 9b)(8x - 12b) - (3b)^3 = (12b)(-3b)(36b) - 27b^3 = -1296b^3 - 27b^3 = -1323b^3
(2x3b)2=(12b3b)2=(9b)2=81b2(2x - 3b)^2 = (12b - 3b)^2 = (9b)^2 = 81b^2, so 81b2=1323b381b^2 = -1323b^3, implies 81=1323b81 = -1323b, so b=81/1323=3/49b = -81/1323 = -3/49
Then x=6b=18/49x = 6b = -18/49.
Consider (2x3b)2=4x212bx+9b2(2x - 3b)^2 = 4x^2 - 12bx + 9b^2.
(x+6b)(x9b)(8x12b)=(x23bx54b2)(8x12b)=8x312bx224bx2+36b2x432b2x+648b3=8x336bx2396b2x+648b3(x + 6b)(x - 9b)(8x - 12b) = (x^2 - 3bx - 54b^2)(8x - 12b) = 8x^3 - 12bx^2 - 24bx^2 + 36b^2 x - 432b^2 x + 648b^3 = 8x^3 - 36bx^2 - 396b^2 x + 648b^3
4x212bx+9b2=8x336bx2396b2x+648b327b34x^2 - 12bx + 9b^2 = 8x^3 - 36bx^2 - 396b^2 x + 648b^3 - 27b^3
8x336bx24x2396b2x+12bx+621b39b2=08x^3 - 36bx^2 - 4x^2 - 396b^2 x + 12bx + 621b^3 - 9b^2 = 0
If x=9bx = 9b, 8(9b)336b(9b)24(9b)2396b2(9b)+12b(9b)+621b39b2=5832b32916b3324b23564b3+108b2+621b39b2=1b28(9b)^3 - 36b(9b)^2 - 4(9b)^2 - 396b^2(9b) + 12b(9b) + 621b^3 - 9b^2 = 5832b^3 - 2916b^3 - 324b^2 - 3564b^3 + 108b^2 + 621b^3 - 9b^2 = -1b^2
Rewrite (2x3b)2=(x+6b)(x9b)(8x12b)(3b)3(2x - 3b)^2 = (x+6b)(x-9b)(8x-12b)-(3b)^3 as (2x3b)2=4(x+6b)(x9b)(2x3b)(3b)3(2x-3b)^2 = 4(x+6b)(x-9b)(2x-3b)-(3b)^3
If 2x3b=02x-3b = 0, then 0=27b30 = -27b^3. If b0b\ne 0 then 2x3b02x-3b\ne 0.
Consider x=9/2bx = 9/2 b
LHS: (9b3b)2=36b2(9b - 3b)^2 = 36b^2.
RHS: (9/2b+6b)(9/2b9b)(36b12b)27b3=(21/2b)(9/2b)(24b)27b3=45364b327b3=1134b327b3=1161b3(9/2b+6b)(9/2b-9b)(36b-12b)-27b^3 = (21/2b)(-9/2b)(24b)-27b^3 = \frac{-4536}{4}b^3 - 27b^3 = -1134 b^3 - 27 b^3 = -1161b^3
36b2=1161b336b^2 = -1161b^3, therefore 36=1161b36=-1161b
4x212xb+9b2=(8x336x2b396xb2+648b3)27b34x^2 - 12xb + 9b^2 = (8x^3 - 36x^2b - 396xb^2 + 648b^3) - 27b^3.
8x3+x2(36b4)+x(12b+396b2)+621b39b2=08x^3 + x^2(-36b - 4) + x(12b + 396b^2) + 621b^3 - 9b^2 = 0.
If x=3bx = 3b: 827b39b2(36b+4)+3b(12b+396b2)+621b39b2=216b3324b336b2+36b2+1188b3+621b39b2=1641b39b28*27b^3 - 9b^2(36b + 4) + 3b(12b + 396b^2) + 621b^3 - 9b^2 = 216b^3 - 324b^3 - 36b^2 + 36b^2 + 1188b^3 + 621b^3 - 9b^2= 1641b^3 - 9b^2

3. Final Answer

The solution is complex and difficult to express in a closed form.
The equation can be simplified to 8x3(36b+4)x2+(12b396b2)x+(621b39b2)=08x^3-(36b+4)x^2+(12b-396b^2)x+(621b^3-9b^2)=0. There is no easy solution to obtain for this cubic equation. If b=0b=0, then 8x34x2=08x^3-4x^2 = 0 thus 4x2(2x1)=04x^2(2x-1) = 0, meaning x=0x=0 or x=1/2x=1/2.

Related problems in "Algebra"

The problem is to solve the following five linear equations: 1. $8 - 8x = 9 - 9x$

Linear EquationsSolving Equations
2025/6/10

The problem is about the quadratic function $y = -2x^2 + (a+3)x + a - 3$. (1) Find the condition on ...

Quadratic FunctionsDiscriminantVieta's FormulasVertex of ParabolaIsosceles Right Triangle
2025/6/10

The problem consists of several sub-problems covering various topics in algebra. These include expre...

Scientific NotationEngineering NotationSimplificationPolynomial Remainder TheoremSimultaneous EquationsLogarithmic EquationsLinear EquationsGradientY-interceptEquation of a LinePartial Fractions
2025/6/10

We are given four problems: a) i. Use the vertical line test to show that $f(x) = \sqrt{x}$ is a fun...

FunctionsVertical Line TestRangeLinear FunctionsInverse FunctionsAlgebraic Manipulation
2025/6/10

We are given the equation $x^3 + 2x^2y - x^2 + 2xy + 4y^2 - 2y = 44$. The problem asks us to factor...

Polynomial FactorizationEquation SolvingInteger Properties
2025/6/10

We are given the equation $f(x) - g(x) = 3ax^2 + 2(a+1)x + a + 1$. We are also given that $a = \fra...

Quadratic EquationsParabolasIntersection of CurvesSystems of Equations
2025/6/10

Given that $f(x) - g(x) = 3ax^2 + 2(a+1)x + a+1$, we need to find the range of values for $a$ such t...

Quadratic InequalitiesQuadratic EquationsDiscriminantParabolasIntersection Points
2025/6/10

The problem is a fill-in-the-blank question. Given that for all real numbers $x$, $f(x) > g(x)$, det...

InequalitiesQuadratic FunctionsIntersection of CurvesProblem Solving
2025/6/10

The problem gives two quadratic functions $f(x) = 2ax^2 + (2a+1)x + a$ and $g(x) = -ax^2 - x - 1$. (...

Quadratic EquationsDiscriminantInequalitiesParabolas
2025/6/10

We are given a quadratic equation to solve: $x^2 - 6x + 9 = 0$. We need to find the value(s) of $x$ ...

Quadratic EquationsFactoringRoots of Equations
2025/6/10