First, expand the left side of the equation:
(2x−3b)2=(2x)2−2(2x)(3b)+(3b)2=4x2−12bx+9b2 Next, expand the right side of the equation:
(x+6b)(x−9b)=x2−9bx+6bx−54b2=x2−3bx−54b2 (x2−3bx−54b2)(8x−12b)=8x3−12bx2−24bx2+36b2x−432b2x+648b3=8x3−36bx2−396b2x+648b3 (3b)3=27b3 So the right side of the equation becomes:
8x3−36bx2−396b2x+648b3−27b3=8x3−36bx2−396b2x+621b3 Now, the equation is:
4x2−12bx+9b2=8x3−36bx2−396b2x+621b3 Rearrange the equation:
8x3−36bx2−4x2−396b2x+12bx+621b3−9b2=0 8x3−(36b+4)x2+(12b−396b2)x+(621b3−9b2)=0 However, note that 8x−12b=4(2x−3b). Thus, the equation becomes: (2x−3b)2=(x+6b)(x−9b)4(2x−3b)−(3b)3 (2x−3b)2−(x+6b)(x−9b)4(2x−3b)+(3b)3=0 Let 2x−3b=y. Then 2x=y+3b, x=2y+23b (2y+23b+6b)(2y+23b−9b)=(2y+215b)(2y−215b)=4y2−4225b2 Thus, the equation becomes:
y2−4(4y2−4225b2)y+27b3=0 y2−(y2−225b2)4y+27b3=0 y2−(4y3−900b2y)+27b3=0 −4y3+y2+900b2y+27b3=0 y=9b is a solution because −4(9b)3+(9b)2+900b2(9b)+27b3=−2916b3+81b2+8100b3+27b3=5211b3+81b2=0 Let's rearrange the initial equation:
4x2−12bx+9b2=(x+6b)(x−9b)(8x−12b)−27b3 4x2−12bx+9b2=4(x+6b)(x−9b)(2x−3b)−27b3 If x=23b then 4(49b2)−12b(23b)+9b2=9b2−18b2+9b2=0 and (x+6b)(x−9b)(8x−12b)−27b3=(3/2b+6b)(3/2b−9b)(12b−12b)−27b3=(15/2b)(−15/2b)(0)−27b3=−27b3 Thus, x=23b implies that 0=−27b3, so b=0, in which case x can be any value. Let 2x−3b=0, so x=23b. If x=6b, (x+6b)(x−9b)(8x−12b)−(3b)3=(12b)(−3b)(36b)−27b3=−1296b3−27b3=−1323b3 (2x−3b)2=(12b−3b)2=(9b)2=81b2, so 81b2=−1323b3, implies 81=−1323b, so b=−81/1323=−3/49 Then x=6b=−18/49. Consider (2x−3b)2=4x2−12bx+9b2. (x+6b)(x−9b)(8x−12b)=(x2−3bx−54b2)(8x−12b)=8x3−12bx2−24bx2+36b2x−432b2x+648b3=8x3−36bx2−396b2x+648b3 4x2−12bx+9b2=8x3−36bx2−396b2x+648b3−27b3 8x3−36bx2−4x2−396b2x+12bx+621b3−9b2=0 If x=9b, 8(9b)3−36b(9b)2−4(9b)2−396b2(9b)+12b(9b)+621b3−9b2=5832b3−2916b3−324b2−3564b3+108b2+621b3−9b2=−1b2 Rewrite (2x−3b)2=(x+6b)(x−9b)(8x−12b)−(3b)3 as (2x−3b)2=4(x+6b)(x−9b)(2x−3b)−(3b)3 If 2x−3b=0, then 0=−27b3. If b=0 then 2x−3b=0. Consider x=9/2b LHS: (9b−3b)2=36b2. RHS: (9/2b+6b)(9/2b−9b)(36b−12b)−27b3=(21/2b)(−9/2b)(24b)−27b3=4−4536b3−27b3=−1134b3−27b3=−1161b3 36b2=−1161b3, therefore 36=−1161b 4x2−12xb+9b2=(8x3−36x2b−396xb2+648b3)−27b3. 8x3+x2(−36b−4)+x(12b+396b2)+621b3−9b2=0. If x=3b: 8∗27b3−9b2(36b+4)+3b(12b+396b2)+621b3−9b2=216b3−324b3−36b2+36b2+1188b3+621b3−9b2=1641b3−9b2