We need to solve the inequality $|\frac{3x}{2x+3}| < 2$.

AlgebraInequalitiesAbsolute ValueRational Expressions
2025/5/25

1. Problem Description

We need to solve the inequality 3x2x+3<2|\frac{3x}{2x+3}| < 2.

2. Solution Steps

The inequality 3x2x+3<2|\frac{3x}{2x+3}| < 2 can be rewritten as:
2<3x2x+3<2-2 < \frac{3x}{2x+3} < 2
This is equivalent to the system of inequalities:
3x2x+3<2\frac{3x}{2x+3} < 2 and 3x2x+3>2\frac{3x}{2x+3} > -2
First, let's solve 3x2x+3<2\frac{3x}{2x+3} < 2:
3x2x+32<0\frac{3x}{2x+3} - 2 < 0
3x2(2x+3)2x+3<0\frac{3x - 2(2x+3)}{2x+3} < 0
3x4x62x+3<0\frac{3x - 4x - 6}{2x+3} < 0
x62x+3<0\frac{-x - 6}{2x+3} < 0
x+62x+3>0\frac{x+6}{2x+3} > 0
We analyze the sign of x+62x+3\frac{x+6}{2x+3}. The critical points are x=6x = -6 and x=32x = -\frac{3}{2}.
- If x<6x < -6, then x+6<0x+6 < 0 and 2x+3<02x+3 < 0, so x+62x+3>0\frac{x+6}{2x+3} > 0.
- If 6<x<32-6 < x < -\frac{3}{2}, then x+6>0x+6 > 0 and 2x+3<02x+3 < 0, so x+62x+3<0\frac{x+6}{2x+3} < 0.
- If x>32x > -\frac{3}{2}, then x+6>0x+6 > 0 and 2x+3>02x+3 > 0, so x+62x+3>0\frac{x+6}{2x+3} > 0.
Therefore, the solution to x+62x+3>0\frac{x+6}{2x+3} > 0 is x<6x < -6 or x>32x > -\frac{3}{2}.
Next, let's solve 3x2x+3>2\frac{3x}{2x+3} > -2:
3x2x+3+2>0\frac{3x}{2x+3} + 2 > 0
3x+2(2x+3)2x+3>0\frac{3x + 2(2x+3)}{2x+3} > 0
3x+4x+62x+3>0\frac{3x + 4x + 6}{2x+3} > 0
7x+62x+3>0\frac{7x+6}{2x+3} > 0
We analyze the sign of 7x+62x+3\frac{7x+6}{2x+3}. The critical points are x=67x = -\frac{6}{7} and x=32x = -\frac{3}{2}.
- If x<32x < -\frac{3}{2}, then 7x+6<07x+6 < 0 and 2x+3<02x+3 < 0, so 7x+62x+3>0\frac{7x+6}{2x+3} > 0.
- If 32<x<67-\frac{3}{2} < x < -\frac{6}{7}, then 7x+6<07x+6 < 0 and 2x+3>02x+3 > 0, so 7x+62x+3<0\frac{7x+6}{2x+3} < 0.
- If x>67x > -\frac{6}{7}, then 7x+6>07x+6 > 0 and 2x+3>02x+3 > 0, so 7x+62x+3>0\frac{7x+6}{2x+3} > 0.
Therefore, the solution to 7x+62x+3>0\frac{7x+6}{2x+3} > 0 is x<32x < -\frac{3}{2} or x>67x > -\frac{6}{7}.
Now we need to find the intersection of the two solutions:
(x<6(x < -6 or x>32)x > -\frac{3}{2}) and (x<32(x < -\frac{3}{2} or x>67)x > -\frac{6}{7})
The intersection is x<6x < -6 or x>67x > -\frac{6}{7}.

3. Final Answer

x<6x < -6 or x>67x > -\frac{6}{7}
In interval notation: (,6)(67,)(-\infty, -6) \cup (-\frac{6}{7}, \infty)

Related problems in "Algebra"

We need to find the domain of the function $f(x) = \frac{x^2}{3 - 4x^4}$. The domain of a rational f...

FunctionsDomainRational FunctionsExponentsRadicals
2025/6/9

The problem provides a table showing the current month's incoming amount, consumption amount, and in...

Linear EquationsInequalitiesWord Problem
2025/6/8

The problem is to simplify the expression $(2x^{-1}y^{-2}z^{-3})^{-2} \times (3x^{-2}y^{-3}z^{-1})^3...

ExponentsSimplificationAlgebraic Expressions
2025/6/8

The general term of a sequence is given by $T_n = \frac{n(n+1)}{2}$. We need to find the value of $T...

Sequences and SeriesArithmetic SequencesFormula ApplicationEvaluation
2025/6/8

The problem asks us to add two complex numbers, $3-2i$ and $4+3i$, and then multiply the result by t...

Complex NumbersComplex Number ArithmeticImaginary Numbers
2025/6/8

Solve the inequality $2(5 - 3x) - 4x + 6 \ge 0$ for $x$.

InequalitiesLinear InequalitiesAlgebraic Manipulation
2025/6/8

The problem asks us to solve the quadratic equation $x^2 + 6x + 9 = 0$ by factorization and describe...

Quadratic EquationsFactorizationRoots of EquationsDiscriminant
2025/6/8

The problem asks to find the domain of the expression $\frac{x}{x+7}$. The domain is the set of all ...

DomainRational ExpressionsInequalities
2025/6/8

The question asks us to identify the type of function whose range consists of only one element. The ...

FunctionsRangeConstant FunctionOne-to-one FunctionOnto Function
2025/6/8

The problem asks us to solve two equations. The first equation is $-5(a-3) = -2a$ for $a$. The secon...

Linear EquationsSolving EquationsAlgebraic ManipulationFractions
2025/6/8