The inequality ∣2x+33x∣<2 can be rewritten as: −2<2x+33x<2 This is equivalent to the system of inequalities:
2x+33x<2 and 2x+33x>−2 First, let's solve 2x+33x<2: 2x+33x−2<0 2x+33x−2(2x+3)<0 2x+33x−4x−6<0 2x+3−x−6<0 2x+3x+6>0 We analyze the sign of 2x+3x+6. The critical points are x=−6 and x=−23. - If x<−6, then x+6<0 and 2x+3<0, so 2x+3x+6>0. - If −6<x<−23, then x+6>0 and 2x+3<0, so 2x+3x+6<0. - If x>−23, then x+6>0 and 2x+3>0, so 2x+3x+6>0. Therefore, the solution to 2x+3x+6>0 is x<−6 or x>−23. Next, let's solve 2x+33x>−2: 2x+33x+2>0 2x+33x+2(2x+3)>0 2x+33x+4x+6>0 2x+37x+6>0 We analyze the sign of 2x+37x+6. The critical points are x=−76 and x=−23. - If x<−23, then 7x+6<0 and 2x+3<0, so 2x+37x+6>0. - If −23<x<−76, then 7x+6<0 and 2x+3>0, so 2x+37x+6<0. - If x>−76, then 7x+6>0 and 2x+3>0, so 2x+37x+6>0. Therefore, the solution to 2x+37x+6>0 is x<−23 or x>−76. Now we need to find the intersection of the two solutions:
(x<−6 or x>−23) and (x<−23 or x>−76) The intersection is x<−6 or x>−76.