We need to find the domain of the function $f(x) = \frac{x^2}{3 - 4x^4}$. The domain of a rational function is all real numbers except for the values of $x$ that make the denominator equal to zero.

AlgebraFunctionsDomainRational FunctionsExponentsRadicals
2025/6/9

1. Problem Description

We need to find the domain of the function f(x)=x234x4f(x) = \frac{x^2}{3 - 4x^4}. The domain of a rational function is all real numbers except for the values of xx that make the denominator equal to zero.

2. Solution Steps

We need to find the values of xx for which the denominator 34x43 - 4x^4 is equal to zero.
So, we set 34x4=03 - 4x^4 = 0 and solve for xx.
34x4=03 - 4x^4 = 0
4x4=34x^4 = 3
x4=34x^4 = \frac{3}{4}
x=±344x = \pm \sqrt[4]{\frac{3}{4}}
x=±3444=±342x = \pm \frac{\sqrt[4]{3}}{\sqrt[4]{4}} = \pm \frac{\sqrt[4]{3}}{\sqrt{2}}
x=±34222=±3422x = \pm \frac{\sqrt[4]{3}\sqrt{2}}{\sqrt{2}\sqrt{2}} = \pm \frac{\sqrt[4]{3}\sqrt{2}}{2}
x=±232x = \pm \frac{\sqrt{2\sqrt{3}}}{2}
Therefore, the domain of the function is all real numbers except x=232x = \frac{\sqrt{2\sqrt{3}}}{2} and x=232x = -\frac{\sqrt{2\sqrt{3}}}{2}.
In interval notation, the domain is (,232)(232,232)(232,)(-\infty, -\frac{\sqrt{2\sqrt{3}}}{2}) \cup (-\frac{\sqrt{2\sqrt{3}}}{2}, \frac{\sqrt{2\sqrt{3}}}{2}) \cup (\frac{\sqrt{2\sqrt{3}}}{2}, \infty).

3. Final Answer

The domain of the function is (,232)(232,232)(232,)(-\infty, -\frac{\sqrt{2\sqrt{3}}}{2}) \cup (-\frac{\sqrt{2\sqrt{3}}}{2}, \frac{\sqrt{2\sqrt{3}}}{2}) \cup (\frac{\sqrt{2\sqrt{3}}}{2}, \infty).