The problem asks to solve the equation $\frac{6}{x-6} - \frac{2(x+14)}{x^2-4x-12} = \frac{4x+11}{x^2+3x+2}$.

AlgebraRational EquationsEquation SolvingFactoringLCDAlgebraic Manipulation
2025/5/26

1. Problem Description

The problem asks to solve the equation
6x62(x+14)x24x12=4x+11x2+3x+2\frac{6}{x-6} - \frac{2(x+14)}{x^2-4x-12} = \frac{4x+11}{x^2+3x+2}.

2. Solution Steps

First, we factor the denominators:
x24x12=(x6)(x+2)x^2 - 4x - 12 = (x-6)(x+2)
x2+3x+2=(x+1)(x+2)x^2 + 3x + 2 = (x+1)(x+2)
The given equation can be rewritten as:
6x62(x+14)(x6)(x+2)=4x+11(x+1)(x+2)\frac{6}{x-6} - \frac{2(x+14)}{(x-6)(x+2)} = \frac{4x+11}{(x+1)(x+2)}
Multiply both sides of the equation by the least common denominator (LCD) (x6)(x+2)(x+1)(x-6)(x+2)(x+1):
6(x+2)(x+1)2(x+14)(x+1)=(4x+11)(x6)6(x+2)(x+1) - 2(x+14)(x+1) = (4x+11)(x-6)
6(x2+3x+2)2(x2+15x+14)=4x224x+11x666(x^2 + 3x + 2) - 2(x^2 + 15x + 14) = 4x^2 - 24x + 11x - 66
6x2+18x+122x230x28=4x213x666x^2 + 18x + 12 - 2x^2 - 30x - 28 = 4x^2 - 13x - 66
4x212x16=4x213x664x^2 - 12x - 16 = 4x^2 - 13x - 66
12x16=13x66-12x - 16 = -13x - 66
12x+13x=66+16-12x + 13x = -66 + 16
x=50x = -50
Now, we need to check if this value makes any denominator equal to zero.
x6=506=560x-6 = -50-6 = -56 \neq 0
x24x12=(50)24(50)12=2500+20012=26880x^2-4x-12 = (-50)^2 - 4(-50) - 12 = 2500 + 200 - 12 = 2688 \neq 0
x2+3x+2=(50)2+3(50)+2=2500150+2=23520x^2+3x+2 = (-50)^2 + 3(-50) + 2 = 2500 - 150 + 2 = 2352 \neq 0
Thus, x=50x=-50 is a valid solution.

3. Final Answer

x=50x = -50

Related problems in "Algebra"