First, we factor the denominators:
x2−4x−12=(x−6)(x+2) x2+3x+2=(x+1)(x+2) The given equation can be rewritten as:
x−66−(x−6)(x+2)2(x+14)=(x+1)(x+2)4x+11 Multiply both sides of the equation by the least common denominator (LCD) (x−6)(x+2)(x+1): 6(x+2)(x+1)−2(x+14)(x+1)=(4x+11)(x−6) 6(x2+3x+2)−2(x2+15x+14)=4x2−24x+11x−66 6x2+18x+12−2x2−30x−28=4x2−13x−66 4x2−12x−16=4x2−13x−66 −12x−16=−13x−66 −12x+13x=−66+16 Now, we need to check if this value makes any denominator equal to zero.
x−6=−50−6=−56=0 x2−4x−12=(−50)2−4(−50)−12=2500+200−12=2688=0 x2+3x+2=(−50)2+3(−50)+2=2500−150+2=2352=0 Thus, x=−50 is a valid solution.