First, we use the rule (am)n=am×n to simplify the exponents. (102)4=102×4=108 (53)4=53×4=512 (54)2=54×2=58 (102)5=102×5=1010 So the expression becomes:
58×1010108×512 We can rewrite this as:
1010108×58512 Now we use the rule anam=am−n to simplify. 1010108=108−10=10−2 58512=512−8=54 So the expression simplifies to:
10−2×54 Since 10=2×5, we can write 10−2=(2×5)−2=2−2×5−2. Then the expression becomes:
2−2×5−2×54=2−2×54−2=2−2×52=221×52=41×25=425 Alternatively, we can rewrite 10−2×54=10254=(2×5)254=22×5254=2254−2=2252=425.