We are asked to show that the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n(n+1)}$ and $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n}{n!}$ converge absolutely. A series $\sum_{n=1}^{\infty} a_n$ converges absolutely if $\sum_{n=1}^{\infty} |a_n|$ converges.

AnalysisSeriesConvergenceAbsolute ConvergenceLimit Comparison TestRatio Test
2025/5/28

1. Problem Description

We are asked to show that the series n=1(1)n+11n(n+1)\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n(n+1)} and n=1(1)n+12nn!\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n}{n!} converge absolutely. A series n=1an\sum_{n=1}^{\infty} a_n converges absolutely if n=1an\sum_{n=1}^{\infty} |a_n| converges.

2. Solution Steps

For the first series, n=1(1)n+11n(n+1)\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n(n+1)}, we need to examine the series n=1(1)n+11n(n+1)=n=11n(n+1)\sum_{n=1}^{\infty} \left| (-1)^{n+1} \frac{1}{n(n+1)} \right| = \sum_{n=1}^{\infty} \frac{1}{n(n+1)}.
We can use the limit comparison test. Let an=1n(n+1)a_n = \frac{1}{n(n+1)} and bn=1n2b_n = \frac{1}{n^2}.
Then, limnanbn=limn1n(n+1)1n2=limnn2n(n+1)=limnn2n2+n=limn11+1n=1\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{1}{n(n+1)}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{n^2}{n(n+1)} = \lim_{n \to \infty} \frac{n^2}{n^2+n} = \lim_{n \to \infty} \frac{1}{1+\frac{1}{n}} = 1.
Since the limit is a finite positive number, and we know that n=11n2\sum_{n=1}^{\infty} \frac{1}{n^2} converges (p-series with p=2>1p=2>1), then n=11n(n+1)\sum_{n=1}^{\infty} \frac{1}{n(n+1)} also converges.
Therefore, the series n=1(1)n+11n(n+1)\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n(n+1)} converges absolutely.
For the second series, n=1(1)n+12nn!\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n}{n!}, we need to examine the series n=1(1)n+12nn!=n=12nn!\sum_{n=1}^{\infty} \left| (-1)^{n+1} \frac{2^n}{n!} \right| = \sum_{n=1}^{\infty} \frac{2^n}{n!}.
We can use the ratio test. Let an=2nn!a_n = \frac{2^n}{n!}.
Then, limnan+1an=limn2n+1(n+1)!2nn!=limn2n+1n!2n(n+1)!=limn2n2n!2n(n+1)n!=limn2n+1=0\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{\frac{2^{n+1}}{(n+1)!}}{\frac{2^n}{n!}} = \lim_{n \to \infty} \frac{2^{n+1} n!}{2^n (n+1)!} = \lim_{n \to \infty} \frac{2^{n} \cdot 2 \cdot n!}{2^n \cdot (n+1) n!} = \lim_{n \to \infty} \frac{2}{n+1} = 0.
Since the limit is less than 1, the series n=12nn!\sum_{n=1}^{\infty} \frac{2^n}{n!} converges.
Therefore, the series n=1(1)n+12nn!\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n}{n!} converges absolutely.

3. Final Answer

The series n=1(1)n+11n(n+1)\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n(n+1)} converges absolutely.
The series n=1(1)n+12nn!\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n}{n!} converges absolutely.

Related problems in "Analysis"

We need to find the convergence set for the given power series. Let's solve the problems one by one.

Power SeriesRatio TestInterval of ConvergenceSeries Convergence
2025/5/28

We need to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n^3}{(2n...

SeriesConvergenceDivergenceRatio TestLimits
2025/5/28

Determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n^3}{(2n)!}$ using ...

SeriesConvergenceDivergenceRatio TestLimits
2025/5/28

The problem asks us to show that the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\ln n}...

Infinite SeriesAlternating SeriesConvergenceAlternating Series TestError EstimationLimitsL'Hopital's Rule
2025/5/28

The problem asks us to show that the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\ln n}...

SeriesAlternating Series TestConvergenceError EstimationLimits
2025/5/28

We are asked to analyze the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n^2+1}$. First, we need ...

SeriesAlternating SeriesConvergenceAlternating Series TestError Estimation
2025/5/28

The problem asks to determine the convergence or divergence of four series using the Limit Compariso...

SeriesConvergenceDivergenceLimit Comparison Test
2025/5/27

We are asked to evaluate the limit $$ \lim_{x\to 0} \frac{(1 - \cos x)^2}{\tan^3 x - \sin^3 x} $$

LimitsTrigonometryL'Hopital's RuleCalculus
2025/5/27

We are asked to evaluate the limit: $\lim_{x \to +\infty} x^2 (1 - \cos(\frac{1}{x}))$

LimitsTrigonometryCalculusL'Hopital's Rule (Implicitly)Series Expansion (Implicitly)
2025/5/27

We need to find the limit of the given expression as $x$ approaches 0: $$ \lim_{x \to 0} \frac{\sqrt...

LimitsTrigonometryL'Hôpital's Rule (Implicitly)Rationalization
2025/5/27