We need to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n^3}{(2n)!}$ using the Ratio Test.

AnalysisSeriesConvergenceDivergenceRatio TestLimits
2025/5/28

1. Problem Description

We need to determine the convergence or divergence of the series n=1n3(2n)!\sum_{n=1}^{\infty} \frac{n^3}{(2n)!} using the Ratio Test.

2. Solution Steps

The Ratio Test states that for a series n=1an\sum_{n=1}^{\infty} a_n, we compute the limit L=limnan+1anL = \lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|.
If L<1L < 1, the series converges absolutely.
If L>1L > 1, the series diverges.
If L=1L = 1, the test is inconclusive.
In this case, an=n3(2n)!a_n = \frac{n^3}{(2n)!}. Thus, an+1=(n+1)3(2(n+1))!=(n+1)3(2n+2)!a_{n+1} = \frac{(n+1)^3}{(2(n+1))!} = \frac{(n+1)^3}{(2n+2)!}.
We need to find the limit L=limnan+1an=limn(n+1)3(2n+2)!n3(2n)!L = \lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{\frac{(n+1)^3}{(2n+2)!}}{\frac{n^3}{(2n)!}} \right|.
L=limn(n+1)3(2n+2)!(2n)!n3=limn(n+1)3n3(2n)!(2n+2)!L = \lim_{n\to\infty} \left| \frac{(n+1)^3}{(2n+2)!} \cdot \frac{(2n)!}{n^3} \right| = \lim_{n\to\infty} \frac{(n+1)^3}{n^3} \cdot \frac{(2n)!}{(2n+2)!}.
We know that (n+1)3n3=(n+1n)3=(1+1n)3\frac{(n+1)^3}{n^3} = \left( \frac{n+1}{n} \right)^3 = \left( 1 + \frac{1}{n} \right)^3.
As nn \to \infty, (1+1n)3(1+0)3=1\left( 1 + \frac{1}{n} \right)^3 \to (1+0)^3 = 1.
Also, (2n)!(2n+2)!=(2n)!(2n+2)(2n+1)(2n)!=1(2n+2)(2n+1)\frac{(2n)!}{(2n+2)!} = \frac{(2n)!}{(2n+2)(2n+1)(2n)!} = \frac{1}{(2n+2)(2n+1)}.
So, L=limn(1+1n)31(2n+2)(2n+1)=limn114n2+6n+2=0L = \lim_{n\to\infty} \left( 1 + \frac{1}{n} \right)^3 \cdot \frac{1}{(2n+2)(2n+1)} = \lim_{n\to\infty} 1 \cdot \frac{1}{4n^2 + 6n + 2} = 0.
Since L=0<1L = 0 < 1, the series converges absolutely by the Ratio Test.

3. Final Answer

The series converges.

Related problems in "Analysis"

We need to find the convergence set for the given power series. Let's solve the problems one by one.

Power SeriesRatio TestInterval of ConvergenceSeries Convergence
2025/5/28

Determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n^3}{(2n)!}$ using ...

SeriesConvergenceDivergenceRatio TestLimits
2025/5/28

We are asked to show that the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n(n+1)}$ and $\sum_{n=...

SeriesConvergenceAbsolute ConvergenceLimit Comparison TestRatio Test
2025/5/28

The problem asks us to show that the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\ln n}...

Infinite SeriesAlternating SeriesConvergenceAlternating Series TestError EstimationLimitsL'Hopital's Rule
2025/5/28

The problem asks us to show that the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\ln n}...

SeriesAlternating Series TestConvergenceError EstimationLimits
2025/5/28

We are asked to analyze the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n^2+1}$. First, we need ...

SeriesAlternating SeriesConvergenceAlternating Series TestError Estimation
2025/5/28

The problem asks to determine the convergence or divergence of four series using the Limit Compariso...

SeriesConvergenceDivergenceLimit Comparison Test
2025/5/27

We are asked to evaluate the limit $$ \lim_{x\to 0} \frac{(1 - \cos x)^2}{\tan^3 x - \sin^3 x} $$

LimitsTrigonometryL'Hopital's RuleCalculus
2025/5/27

We are asked to evaluate the limit: $\lim_{x \to +\infty} x^2 (1 - \cos(\frac{1}{x}))$

LimitsTrigonometryCalculusL'Hopital's Rule (Implicitly)Series Expansion (Implicitly)
2025/5/27

We need to find the limit of the given expression as $x$ approaches 0: $$ \lim_{x \to 0} \frac{\sqrt...

LimitsTrigonometryL'Hôpital's Rule (Implicitly)Rationalization
2025/5/27