We need to find the convergence set for the given power series. Let's solve the problems one by one.

AnalysisPower SeriesRatio TestInterval of ConvergenceSeries Convergence
2025/5/28

1. Problem Description

We need to find the convergence set for the given power series. Let's solve the problems one by one.

2. Solution Steps

Problem 1: n=1xn(n1)!\sum_{n=1}^{\infty} \frac{x^n}{(n-1)!}
We use the ratio test.
an=xn(n1)!a_n = \frac{x^n}{(n-1)!}
an+1=xn+1n!a_{n+1} = \frac{x^{n+1}}{n!}
limnan+1an=limnxn+1n!(n1)!xn=limnxn=xlimn1n=x0=0\lim_{n \to \infty} |\frac{a_{n+1}}{a_n}| = \lim_{n \to \infty} |\frac{x^{n+1}}{n!} \cdot \frac{(n-1)!}{x^n}| = \lim_{n \to \infty} |\frac{x}{n}| = |x| \lim_{n \to \infty} \frac{1}{n} = |x| \cdot 0 = 0
Since the limit is 0 for all xx, the series converges for all xx.
Problem 2: n=1xn3n\sum_{n=1}^{\infty} \frac{x^n}{3^n}
an=xn3n=(x3)na_n = \frac{x^n}{3^n} = (\frac{x}{3})^n
We use the ratio test.
limnan+1an=limn(x3)n+1(x3)n=limnx3=x3\lim_{n \to \infty} |\frac{a_{n+1}}{a_n}| = \lim_{n \to \infty} |\frac{(\frac{x}{3})^{n+1}}{(\frac{x}{3})^n}| = \lim_{n \to \infty} |\frac{x}{3}| = |\frac{x}{3}|
For convergence, we need x3<1|\frac{x}{3}| < 1, which means x<3|x| < 3, so 3<x<3-3 < x < 3.
Now we check the endpoints.
When x=3x = 3, we have n=13n3n=n=11\sum_{n=1}^{\infty} \frac{3^n}{3^n} = \sum_{n=1}^{\infty} 1, which diverges.
When x=3x = -3, we have n=1(3)n3n=n=1(1)n\sum_{n=1}^{\infty} \frac{(-3)^n}{3^n} = \sum_{n=1}^{\infty} (-1)^n, which diverges.
So the interval of convergence is (3,3)(-3, 3).
Problem 3: n=1xnn2\sum_{n=1}^{\infty} \frac{x^n}{n^2}
an=xnn2a_n = \frac{x^n}{n^2}
We use the ratio test.
limnan+1an=limnxn+1(n+1)2n2xn=limnxn2(n+1)2=xlimn(nn+1)2=x1=x\lim_{n \to \infty} |\frac{a_{n+1}}{a_n}| = \lim_{n \to \infty} |\frac{x^{n+1}}{(n+1)^2} \cdot \frac{n^2}{x^n}| = \lim_{n \to \infty} |x \frac{n^2}{(n+1)^2}| = |x| \lim_{n \to \infty} (\frac{n}{n+1})^2 = |x| \cdot 1 = |x|
For convergence, we need x<1|x| < 1, which means 1<x<1-1 < x < 1.
Now we check the endpoints.
When x=1x = 1, we have n=11n2\sum_{n=1}^{\infty} \frac{1}{n^2}, which converges (p-series with p=2>1p=2 > 1).
When x=1x = -1, we have n=1(1)nn2\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}, which converges (alternating series test).
So the interval of convergence is [1,1][-1, 1].
Problem 4: n=1nxn\sum_{n=1}^{\infty} nx^n
an=nxna_n = nx^n
We use the ratio test.
limnan+1an=limn(n+1)xn+1nxn=limnxn+1n=xlimnn+1n=x1=x\lim_{n \to \infty} |\frac{a_{n+1}}{a_n}| = \lim_{n \to \infty} |\frac{(n+1)x^{n+1}}{nx^n}| = \lim_{n \to \infty} |x \frac{n+1}{n}| = |x| \lim_{n \to \infty} \frac{n+1}{n} = |x| \cdot 1 = |x|
For convergence, we need x<1|x| < 1, which means 1<x<1-1 < x < 1.
Now we check the endpoints.
When x=1x = 1, we have n=1n\sum_{n=1}^{\infty} n, which diverges.
When x=1x = -1, we have n=1n(1)n\sum_{n=1}^{\infty} n(-1)^n, which diverges.
So the interval of convergence is (1,1)(-1, 1).
Problem 5: n=1(1)n+1xnn2\sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n^2}
an=(1)n+1xnn2a_n = (-1)^{n+1} \frac{x^n}{n^2}
We use the ratio test.
limnan+1an=limn(1)n+2xn+1(n+1)2n2(1)n+1xn=limnxn2(n+1)2=xlimn(nn+1)2=x1=x\lim_{n \to \infty} |\frac{a_{n+1}}{a_n}| = \lim_{n \to \infty} |\frac{(-1)^{n+2} x^{n+1}}{(n+1)^2} \cdot \frac{n^2}{(-1)^{n+1} x^n}| = \lim_{n \to \infty} |x \frac{n^2}{(n+1)^2}| = |x| \lim_{n \to \infty} (\frac{n}{n+1})^2 = |x| \cdot 1 = |x|
For convergence, we need x<1|x| < 1, which means 1<x<1-1 < x < 1.
Now we check the endpoints.
When x=1x = 1, we have n=1(1)n+11n2\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2}, which converges (alternating series test).
When x=1x = -1, we have n=1(1)n+1(1)nn2=n=1(1)2n+11n2=n=11n2\sum_{n=1}^{\infty} (-1)^{n+1} \frac{(-1)^n}{n^2} = \sum_{n=1}^{\infty} (-1)^{2n+1} \frac{1}{n^2} = \sum_{n=1}^{\infty} -\frac{1}{n^2}, which converges (p-series with p=2>1p=2 > 1).
So the interval of convergence is [1,1][-1, 1].
Problem 6: n=1(1)nxnn\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}
an=(1)nxnna_n = (-1)^n \frac{x^n}{n}
We use the ratio test.
limnan+1an=limn(1)n+1xn+1n+1n(1)nxn=limnxnn+1=xlimnnn+1=x1=x\lim_{n \to \infty} |\frac{a_{n+1}}{a_n}| = \lim_{n \to \infty} |\frac{(-1)^{n+1} x^{n+1}}{n+1} \cdot \frac{n}{(-1)^n x^n}| = \lim_{n \to \infty} |x \frac{n}{n+1}| = |x| \lim_{n \to \infty} \frac{n}{n+1} = |x| \cdot 1 = |x|
For convergence, we need x<1|x| < 1, which means 1<x<1-1 < x < 1.
Now we check the endpoints.
When x=1x = 1, we have n=1(1)n1n\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}, which converges (alternating series test).
When x=1x = -1, we have n=1(1)n(1)nn=n=11n\sum_{n=1}^{\infty} (-1)^n \frac{(-1)^n}{n} = \sum_{n=1}^{\infty} \frac{1}{n}, which diverges (harmonic series).
So the interval of convergence is (1,1](-1, 1].
Problem 7: n=1(1)n(x2)nn\sum_{n=1}^{\infty} (-1)^n \frac{(x-2)^n}{n}
an=(1)n(x2)nna_n = (-1)^n \frac{(x-2)^n}{n}
We use the ratio test.
limnan+1an=limn(1)n+1(x2)n+1n+1n(1)n(x2)n=limn(x2)nn+1=x2limnnn+1=x21=x2\lim_{n \to \infty} |\frac{a_{n+1}}{a_n}| = \lim_{n \to \infty} |\frac{(-1)^{n+1} (x-2)^{n+1}}{n+1} \cdot \frac{n}{(-1)^n (x-2)^n}| = \lim_{n \to \infty} |(x-2) \frac{n}{n+1}| = |x-2| \lim_{n \to \infty} \frac{n}{n+1} = |x-2| \cdot 1 = |x-2|
For convergence, we need x2<1|x-2| < 1, which means 1<x2<1-1 < x-2 < 1, so 1<x<31 < x < 3.
Now we check the endpoints.
When x=1x = 1, we have n=1(1)n(1)nn=n=11n\sum_{n=1}^{\infty} (-1)^n \frac{(-1)^n}{n} = \sum_{n=1}^{\infty} \frac{1}{n}, which diverges (harmonic series).
When x=3x = 3, we have n=1(1)n(1)nn=n=1(1)n1n\sum_{n=1}^{\infty} (-1)^n \frac{(1)^n}{n} = \sum_{n=1}^{\infty} (-1)^n \frac{1}{n}, which converges (alternating series test).
So the interval of convergence is (1,3](1, 3].
Problem 8: n=1(x+1)nn!\sum_{n=1}^{\infty} \frac{(x+1)^n}{n!}
an=(x+1)nn!a_n = \frac{(x+1)^n}{n!}
an+1=(x+1)n+1(n+1)!a_{n+1} = \frac{(x+1)^{n+1}}{(n+1)!}
We use the ratio test.
limnan+1an=limn(x+1)n+1(n+1)!n!(x+1)n=limnx+1n+1=x+1limn1n+1=x+10=0\lim_{n \to \infty} |\frac{a_{n+1}}{a_n}| = \lim_{n \to \infty} |\frac{(x+1)^{n+1}}{(n+1)!} \cdot \frac{n!}{(x+1)^n}| = \lim_{n \to \infty} |\frac{x+1}{n+1}| = |x+1| \lim_{n \to \infty} \frac{1}{n+1} = |x+1| \cdot 0 = 0
Since the limit is 0 for all xx, the series converges for all xx.

3. Final Answer

1. $(-\infty, \infty)$

2. $(-3, 3)$

3. $[-1, 1]$

4. $(-1, 1)$

5. $[-1, 1]$

6. $(-1, 1]$

7. $(1, 3]$

8. $(-\infty, \infty)$

Related problems in "Analysis"

We need to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n^3}{(2n...

SeriesConvergenceDivergenceRatio TestLimits
2025/5/28

Determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n^3}{(2n)!}$ using ...

SeriesConvergenceDivergenceRatio TestLimits
2025/5/28

We are asked to show that the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n(n+1)}$ and $\sum_{n=...

SeriesConvergenceAbsolute ConvergenceLimit Comparison TestRatio Test
2025/5/28

The problem asks us to show that the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\ln n}...

Infinite SeriesAlternating SeriesConvergenceAlternating Series TestError EstimationLimitsL'Hopital's Rule
2025/5/28

The problem asks us to show that the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\ln n}...

SeriesAlternating Series TestConvergenceError EstimationLimits
2025/5/28

We are asked to analyze the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n^2+1}$. First, we need ...

SeriesAlternating SeriesConvergenceAlternating Series TestError Estimation
2025/5/28

The problem asks to determine the convergence or divergence of four series using the Limit Compariso...

SeriesConvergenceDivergenceLimit Comparison Test
2025/5/27

We are asked to evaluate the limit $$ \lim_{x\to 0} \frac{(1 - \cos x)^2}{\tan^3 x - \sin^3 x} $$

LimitsTrigonometryL'Hopital's RuleCalculus
2025/5/27

We are asked to evaluate the limit: $\lim_{x \to +\infty} x^2 (1 - \cos(\frac{1}{x}))$

LimitsTrigonometryCalculusL'Hopital's Rule (Implicitly)Series Expansion (Implicitly)
2025/5/27

We need to find the limit of the given expression as $x$ approaches 0: $$ \lim_{x \to 0} \frac{\sqrt...

LimitsTrigonometryL'Hôpital's Rule (Implicitly)Rationalization
2025/5/27