The problem asks us to find the inverse function $f^{-1}(y)$ given the function $f(x) = 2(x+2) + 5$.

AlgebraInverse FunctionsLinear Functions
2025/3/26

1. Problem Description

The problem asks us to find the inverse function f1(y)f^{-1}(y) given the function f(x)=2(x+2)+5f(x) = 2(x+2) + 5.

2. Solution Steps

First, we simplify the given function f(x)f(x):
f(x)=2(x+2)+5=2x+4+5=2x+9f(x) = 2(x+2) + 5 = 2x + 4 + 5 = 2x + 9.
To find the inverse function, we replace f(x)f(x) with yy and then swap xx and yy:
y=2x+9y = 2x + 9.
Swapping xx and yy, we get:
x=2y+9x = 2y + 9.
Now, we solve for yy:
x9=2yx - 9 = 2y
y=x92y = \frac{x-9}{2}.
Finally, we replace yy with f1(x)f^{-1}(x). Since we want the inverse in terms of yy, we have f1(y)=y92f^{-1}(y) = \frac{y-9}{2}.

3. Final Answer

f1(y)=y92f^{-1}(y) = \frac{y-9}{2}