We are given two matrices, $D = \begin{bmatrix} 2 & 6 \\ 7 & 3 \end{bmatrix}$ and $E = \begin{bmatrix} 1 & 0 & 3 \\ 7 & 1 & 0 \end{bmatrix}$. We are asked to find the product $DE$.

AlgebraMatricesMatrix Multiplication
2025/3/8

1. Problem Description

We are given two matrices, D=[2673]D = \begin{bmatrix} 2 & 6 \\ 7 & 3 \end{bmatrix} and E=[103710]E = \begin{bmatrix} 1 & 0 & 3 \\ 7 & 1 & 0 \end{bmatrix}. We are asked to find the product DEDE.

2. Solution Steps

To find the product of two matrices DD and EE, we need to check if the number of columns of DD is equal to the number of rows of EE. Here, DD is a 2×22 \times 2 matrix and EE is a 2×32 \times 3 matrix. Since the number of columns of DD (which is 2) is equal to the number of rows of EE (which is 2), we can multiply the matrices. The resulting matrix DEDE will have the same number of rows as DD and the same number of columns as EE, so DEDE will be a 2×32 \times 3 matrix.
The elements of the product matrix DEDE are calculated as follows:
(DE)ij=k=1nDikEkj(DE)_{ij} = \sum_{k=1}^{n} D_{ik} E_{kj}, where nn is the number of columns in DD (or the number of rows in EE).
DE=[2673][103710]=[(2)(1)+(6)(7)(2)(0)+(6)(1)(2)(3)+(6)(0)(7)(1)+(3)(7)(7)(0)+(3)(1)(7)(3)+(3)(0)]DE = \begin{bmatrix} 2 & 6 \\ 7 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 3 \\ 7 & 1 & 0 \end{bmatrix} = \begin{bmatrix} (2)(1) + (6)(7) & (2)(0) + (6)(1) & (2)(3) + (6)(0) \\ (7)(1) + (3)(7) & (7)(0) + (3)(1) & (7)(3) + (3)(0) \end{bmatrix}
DE=[2+420+66+07+210+321+0]=[446628321]DE = \begin{bmatrix} 2 + 42 & 0 + 6 & 6 + 0 \\ 7 + 21 & 0 + 3 & 21 + 0 \end{bmatrix} = \begin{bmatrix} 44 & 6 & 6 \\ 28 & 3 & 21 \end{bmatrix}

3. Final Answer

DE=[446628321]DE = \begin{bmatrix} 44 & 6 & 6 \\ 28 & 3 & 21 \end{bmatrix}

Related problems in "Algebra"