The problem is to eliminate the cross-product term in the equation $4xy - 3y^2 = 64$ by a suitable rotation of axes, put the equation in standard form, and graph the equation showing the rotated axes.

GeometryConic SectionsRotation of AxesHyperbolaCoordinate Geometry
2025/6/1

1. Problem Description

The problem is to eliminate the cross-product term in the equation 4xy3y2=644xy - 3y^2 = 64 by a suitable rotation of axes, put the equation in standard form, and graph the equation showing the rotated axes.

2. Solution Steps

The given equation is 4xy3y2=644xy - 3y^2 = 64.
To eliminate the cross-product term xyxy, we rotate the coordinate axes by an angle θ\theta.
The rotation formulas are
x=xcosθysinθx = x' \cos \theta - y' \sin \theta
y=xsinθ+ycosθy = x' \sin \theta + y' \cos \theta
Substituting these into the equation gives
4(xcosθysinθ)(xsinθ+ycosθ)3(xsinθ+ycosθ)2=644(x' \cos \theta - y' \sin \theta)(x' \sin \theta + y' \cos \theta) - 3(x' \sin \theta + y' \cos \theta)^2 = 64
4(x2sinθcosθ+xycos2θxysin2θy2sinθcosθ)3(x2sin2θ+2xysinθcosθ+y2cos2θ)=644(x'^2 \sin \theta \cos \theta + x'y' \cos^2 \theta - x'y' \sin^2 \theta - y'^2 \sin \theta \cos \theta) - 3(x'^2 \sin^2 \theta + 2x'y' \sin \theta \cos \theta + y'^2 \cos^2 \theta) = 64
4x2sinθcosθ+4xy(cos2θsin2θ)4y2sinθcosθ3x2sin2θ6xysinθcosθ3y2cos2θ=644x'^2 \sin \theta \cos \theta + 4x'y' (\cos^2 \theta - \sin^2 \theta) - 4y'^2 \sin \theta \cos \theta - 3x'^2 \sin^2 \theta - 6x'y' \sin \theta \cos \theta - 3y'^2 \cos^2 \theta = 64
x2(4sinθcosθ3sin2θ)+xy(4cos2θ4sin2θ6sinθcosθ)+y2(4sinθcosθ3cos2θ)=64x'^2(4 \sin \theta \cos \theta - 3 \sin^2 \theta) + x'y'(4 \cos^2 \theta - 4 \sin^2 \theta - 6 \sin \theta \cos \theta) + y'^2(-4 \sin \theta \cos \theta - 3 \cos^2 \theta) = 64
We want the coefficient of the xyx'y' term to be zero.
4cos2θ4sin2θ6sinθcosθ=04 \cos^2 \theta - 4 \sin^2 \theta - 6 \sin \theta \cos \theta = 0
4(cos2θsin2θ)3(2sinθcosθ)=04 (\cos^2 \theta - \sin^2 \theta) - 3 (2 \sin \theta \cos \theta) = 0
4cos(2θ)3sin(2θ)=04 \cos(2\theta) - 3 \sin(2\theta) = 0
4cos(2θ)=3sin(2θ)4 \cos(2\theta) = 3 \sin(2\theta)
tan(2θ)=43\tan(2\theta) = \frac{4}{3}
Let 2θ=α2\theta = \alpha, so tan(α)=43\tan(\alpha) = \frac{4}{3}. Then sinα=45\sin \alpha = \frac{4}{5} and cosα=35\cos \alpha = \frac{3}{5}.
We have the identities:
sin2θ=1cos(2θ)2\sin^2 \theta = \frac{1 - \cos(2\theta)}{2}
cos2θ=1+cos(2θ)2\cos^2 \theta = \frac{1 + \cos(2\theta)}{2}
sinθcosθ=sin(2θ)2\sin \theta \cos \theta = \frac{\sin(2\theta)}{2}
cos(2θ)=35\cos(2\theta) = \frac{3}{5}
sin(2θ)=45\sin(2\theta) = \frac{4}{5}
sin2θ=1352=252=15\sin^2 \theta = \frac{1 - \frac{3}{5}}{2} = \frac{\frac{2}{5}}{2} = \frac{1}{5}
cos2θ=1+352=852=45\cos^2 \theta = \frac{1 + \frac{3}{5}}{2} = \frac{\frac{8}{5}}{2} = \frac{4}{5}
sinθ=15\sin \theta = \frac{1}{\sqrt{5}}
cosθ=25\cos \theta = \frac{2}{\sqrt{5}}
sinθcosθ=1525=25\sin \theta \cos \theta = \frac{1}{\sqrt{5}} \cdot \frac{2}{\sqrt{5}} = \frac{2}{5}
The equation becomes
x2(4sinθcosθ3sin2θ)+y2(4sinθcosθ3cos2θ)=64x'^2(4 \sin \theta \cos \theta - 3 \sin^2 \theta) + y'^2(-4 \sin \theta \cos \theta - 3 \cos^2 \theta) = 64
x2(4(25)3(15))+y2(4(25)3(45))=64x'^2(4(\frac{2}{5}) - 3(\frac{1}{5})) + y'^2(-4(\frac{2}{5}) - 3(\frac{4}{5})) = 64
x2(8535)+y2(85125)=64x'^2(\frac{8}{5} - \frac{3}{5}) + y'^2(-\frac{8}{5} - \frac{12}{5}) = 64
x2(55)+y2(205)=64x'^2(\frac{5}{5}) + y'^2(-\frac{20}{5}) = 64
x24y2=64x'^2 - 4y'^2 = 64
x264y216=1\frac{x'^2}{64} - \frac{y'^2}{16} = 1
This is a hyperbola with a2=64a^2 = 64 and b2=16b^2 = 16.
a=8a = 8 and b=4b = 4.
The vertices are (±8,0)(\pm 8, 0) in the xyx'y' coordinate system.
The asymptotes are y=±bax=±48x=±12xy' = \pm \frac{b}{a} x' = \pm \frac{4}{8} x' = \pm \frac{1}{2} x'.
The angle of rotation satisfies tan(2θ)=43\tan(2\theta) = \frac{4}{3}. So 2θ=arctan(43)53.132\theta = \arctan(\frac{4}{3}) \approx 53.13^{\circ}, and θ26.565\theta \approx 26.565^{\circ}.

3. Final Answer

The equation in the rotated coordinate system is x264y216=1\frac{x'^2}{64} - \frac{y'^2}{16} = 1. This is a hyperbola. The angle of rotation is θ=12arctan(43)\theta = \frac{1}{2} \arctan(\frac{4}{3}).

Related problems in "Geometry"

We need to describe the domain of the following two functions geometrically: 27. $f(x, y, z) = \sqrt...

3D GeometryDomainSphereHyperboloidMultivariable Calculus
2025/6/3

We need to find the gradient of the line passing through the points $P(2, -3)$ and $Q(5, 3)$.

Coordinate GeometryGradientSlope of a Line
2025/6/3

The problem presents a diagram with a circle and some angles. Given that $\angle PMQ = 34^\circ$ and...

Circle GeometryAnglesCyclic QuadrilateralsInscribed Angles
2025/6/3

In the given diagram, we are given that $∠PMQ = 34°$ and $∠NQM = 28°$. We need to find the measure o...

AnglesCirclesCyclic QuadrilateralsTriangles
2025/6/3

We need to sketch the graph of $f(x, y)$ for the following functions: 7. $f(x, y) = 6$ 8. $f(x, y) =...

3D GeometrySurfacesPlanesCylindersParaboloidsEllipsoidsHemispheres
2025/6/3

The problem provides the measures of the six interior angles of a hexagon in terms of $x$. The task ...

PolygonHexagonInterior AnglesAngle SumAlgebra
2025/6/3

We are asked to describe the graphs of several functions of two variables, $f(x, y)$.

3D GeometryFunctions of Two VariablesPlanesCylindersSpheresEllipsoidsParaboloids
2025/6/3

We are given that a sector of a circle has a radius of 21 cm and subtends an angle of $120^{\circ}$ ...

Arc LengthCirclesSectorTrigonometry
2025/6/3

Problem 30: We are given a right triangle $PQR$ with $\angle PQR = 90^\circ$, $|QR| = 2$ cm, and $\a...

TrigonometryRight TrianglesTriangle Angle SumAngle Ratios
2025/6/3

Question 28: The probability that a seed planted will germinate is 0.75. If 3 of such seeds are plan...

ConeVolumeRadius
2025/6/3