Let $T$ be the centroid of triangle $ABC$. Prove that the vector sum $\vec{TA} + \vec{TB} + \vec{TC} = \vec{0}$.

GeometryVectorsTrianglesCentroidGeometric Proof
2025/3/27

1. Problem Description

Let TT be the centroid of triangle ABCABC. Prove that the vector sum TA+TB+TC=0\vec{TA} + \vec{TB} + \vec{TC} = \vec{0}.

2. Solution Steps

Let AA, BB, and CC be the vertices of a triangle. Let TT be the centroid of the triangle. The centroid is the intersection point of the medians of the triangle. A median is a line segment connecting a vertex to the midpoint of the opposite side.
The position vector of the centroid TT can be expressed as the average of the position vectors of the vertices:
OT=OA+OB+OC3\vec{OT} = \frac{\vec{OA} + \vec{OB} + \vec{OC}}{3}
where OO is the origin.
Now, let's express the vectors TA\vec{TA}, TB\vec{TB}, and TC\vec{TC} in terms of the position vectors of the vertices and the centroid:
TA=OAOT\vec{TA} = \vec{OA} - \vec{OT}
TB=OBOT\vec{TB} = \vec{OB} - \vec{OT}
TC=OCOT\vec{TC} = \vec{OC} - \vec{OT}
We want to show that TA+TB+TC=0\vec{TA} + \vec{TB} + \vec{TC} = \vec{0}. Let's add the expressions above:
TA+TB+TC=(OAOT)+(OBOT)+(OCOT)\vec{TA} + \vec{TB} + \vec{TC} = (\vec{OA} - \vec{OT}) + (\vec{OB} - \vec{OT}) + (\vec{OC} - \vec{OT})
TA+TB+TC=OA+OB+OC3OT\vec{TA} + \vec{TB} + \vec{TC} = \vec{OA} + \vec{OB} + \vec{OC} - 3\vec{OT}
Substitute OT=OA+OB+OC3\vec{OT} = \frac{\vec{OA} + \vec{OB} + \vec{OC}}{3} into the equation:
TA+TB+TC=OA+OB+OC3(OA+OB+OC3)\vec{TA} + \vec{TB} + \vec{TC} = \vec{OA} + \vec{OB} + \vec{OC} - 3 \left(\frac{\vec{OA} + \vec{OB} + \vec{OC}}{3}\right)
TA+TB+TC=OA+OB+OC(OA+OB+OC)\vec{TA} + \vec{TB} + \vec{TC} = \vec{OA} + \vec{OB} + \vec{OC} - (\vec{OA} + \vec{OB} + \vec{OC})
TA+TB+TC=0\vec{TA} + \vec{TB} + \vec{TC} = \vec{0}

3. Final Answer

TA+TB+TC=0\vec{TA} + \vec{TB} + \vec{TC} = \vec{0}

Related problems in "Geometry"

We need to describe the domain of the following two functions geometrically: 27. $f(x, y, z) = \sqrt...

3D GeometryDomainSphereHyperboloidMultivariable Calculus
2025/6/3

We need to find the gradient of the line passing through the points $P(2, -3)$ and $Q(5, 3)$.

Coordinate GeometryGradientSlope of a Line
2025/6/3

The problem presents a diagram with a circle and some angles. Given that $\angle PMQ = 34^\circ$ and...

Circle GeometryAnglesCyclic QuadrilateralsInscribed Angles
2025/6/3

In the given diagram, we are given that $∠PMQ = 34°$ and $∠NQM = 28°$. We need to find the measure o...

AnglesCirclesCyclic QuadrilateralsTriangles
2025/6/3

We need to sketch the graph of $f(x, y)$ for the following functions: 7. $f(x, y) = 6$ 8. $f(x, y) =...

3D GeometrySurfacesPlanesCylindersParaboloidsEllipsoidsHemispheres
2025/6/3

The problem provides the measures of the six interior angles of a hexagon in terms of $x$. The task ...

PolygonHexagonInterior AnglesAngle SumAlgebra
2025/6/3

We are asked to describe the graphs of several functions of two variables, $f(x, y)$.

3D GeometryFunctions of Two VariablesPlanesCylindersSpheresEllipsoidsParaboloids
2025/6/3

We are given that a sector of a circle has a radius of 21 cm and subtends an angle of $120^{\circ}$ ...

Arc LengthCirclesSectorTrigonometry
2025/6/3

Problem 30: We are given a right triangle $PQR$ with $\angle PQR = 90^\circ$, $|QR| = 2$ cm, and $\a...

TrigonometryRight TrianglesTriangle Angle SumAngle Ratios
2025/6/3

Question 28: The probability that a seed planted will germinate is 0.75. If 3 of such seeds are plan...

ConeVolumeRadius
2025/6/3