Let $T$ be the centroid of triangle $ABC$. Prove that the vector sum $\vec{TA} + \vec{TB} + \vec{TC} = \vec{0}$.

GeometryVectorsTrianglesCentroidGeometric Proof
2025/3/27

1. Problem Description

Let TT be the centroid of triangle ABCABC. Prove that the vector sum TA+TB+TC=0\vec{TA} + \vec{TB} + \vec{TC} = \vec{0}.

2. Solution Steps

Let AA, BB, and CC be the vertices of a triangle. Let TT be the centroid of the triangle. The centroid is the intersection point of the medians of the triangle. A median is a line segment connecting a vertex to the midpoint of the opposite side.
The position vector of the centroid TT can be expressed as the average of the position vectors of the vertices:
OT=OA+OB+OC3\vec{OT} = \frac{\vec{OA} + \vec{OB} + \vec{OC}}{3}
where OO is the origin.
Now, let's express the vectors TA\vec{TA}, TB\vec{TB}, and TC\vec{TC} in terms of the position vectors of the vertices and the centroid:
TA=OAOT\vec{TA} = \vec{OA} - \vec{OT}
TB=OBOT\vec{TB} = \vec{OB} - \vec{OT}
TC=OCOT\vec{TC} = \vec{OC} - \vec{OT}
We want to show that TA+TB+TC=0\vec{TA} + \vec{TB} + \vec{TC} = \vec{0}. Let's add the expressions above:
TA+TB+TC=(OAOT)+(OBOT)+(OCOT)\vec{TA} + \vec{TB} + \vec{TC} = (\vec{OA} - \vec{OT}) + (\vec{OB} - \vec{OT}) + (\vec{OC} - \vec{OT})
TA+TB+TC=OA+OB+OC3OT\vec{TA} + \vec{TB} + \vec{TC} = \vec{OA} + \vec{OB} + \vec{OC} - 3\vec{OT}
Substitute OT=OA+OB+OC3\vec{OT} = \frac{\vec{OA} + \vec{OB} + \vec{OC}}{3} into the equation:
TA+TB+TC=OA+OB+OC3(OA+OB+OC3)\vec{TA} + \vec{TB} + \vec{TC} = \vec{OA} + \vec{OB} + \vec{OC} - 3 \left(\frac{\vec{OA} + \vec{OB} + \vec{OC}}{3}\right)
TA+TB+TC=OA+OB+OC(OA+OB+OC)\vec{TA} + \vec{TB} + \vec{TC} = \vec{OA} + \vec{OB} + \vec{OC} - (\vec{OA} + \vec{OB} + \vec{OC})
TA+TB+TC=0\vec{TA} + \vec{TB} + \vec{TC} = \vec{0}

3. Final Answer

TA+TB+TC=0\vec{TA} + \vec{TB} + \vec{TC} = \vec{0}

Related problems in "Geometry"

We are given a line segment $XY$ with coordinates $X(-8, -12)$ and $Y(p, q)$. The midpoint of $XY$ i...

Midpoint FormulaCoordinate GeometryLine Segment
2025/4/11

In the circle $ABCDE$, $EC$ is a diameter. Given that $\angle ABC = 158^{\circ}$, find $\angle ADE$.

CirclesCyclic QuadrilateralsInscribed AnglesAngles in a Circle
2025/4/11

Given the equation of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where $a \neq b$, we need ...

EllipseTangentsLocusCoordinate Geometry
2025/4/11

We are given a cone with base radius $r = 8$ cm and height $h = 11$ cm. We need to calculate the cur...

ConeSurface AreaPythagorean TheoremThree-dimensional Geometry
2025/4/11

$PQRS$ is a cyclic quadrilateral. We are given the measures of its angles in terms of $x$ and $y$. W...

Cyclic QuadrilateralAnglesLinear EquationsSolving Equations
2025/4/11

In the given diagram, line segment $MP$ is a tangent to circle $NQR$ at point $N$. $\angle PNQ = 64^...

Circle GeometryTangentsAnglesTrianglesIsosceles TriangleAlternate Segment Theorem
2025/4/11

We are given a diagram with two parallel lines intersected by two transversals. We need to find the ...

Parallel LinesTransversalsAnglesSupplementary Angles
2025/4/11

A trapezium with sides 10 cm and 21 cm, and height 8 cm is inscribed in a circle of radius 7 cm. The...

AreaTrapeziumCircleArea Calculation
2025/4/11

In circle $PQRS$ with center $O$, $\angle PQR = 72^\circ$ and $OR \parallel PS$. We need to find the...

Circle GeometryAnglesParallel LinesIsosceles Triangle
2025/4/11

The problem asks which of the given angles (66°, 72°, 24°, 15°) is not an exterior angle of a regula...

Regular PolygonExterior AnglePolygon Angle SumDivisibility
2025/4/11