Let $A_1, B_1, C_1$ be the midpoints of sides $BC, CA, AB$ of triangle $ABC$, respectively. Let $M$ be an arbitrary point in the plane of the triangle. Prove that $\vec{MA_1} + \vec{MB_1} + \vec{MC_1} = \vec{MA} + \vec{MB} + \vec{MC}$.

GeometryVectorsTriangle GeometryMidpointsVector AdditionGeometric Proof
2025/3/27

1. Problem Description

Let A1,B1,C1A_1, B_1, C_1 be the midpoints of sides BC,CA,ABBC, CA, AB of triangle ABCABC, respectively. Let MM be an arbitrary point in the plane of the triangle. Prove that MA1+MB1+MC1=MA+MB+MC\vec{MA_1} + \vec{MB_1} + \vec{MC_1} = \vec{MA} + \vec{MB} + \vec{MC}.

2. Solution Steps

We are given that A1A_1, B1B_1, and C1C_1 are midpoints of BCBC, CACA, and ABAB, respectively. Therefore, we have:
MA1=12(MB+MC)\vec{MA_1} = \frac{1}{2}(\vec{MB} + \vec{MC})
MB1=12(MC+MA)\vec{MB_1} = \frac{1}{2}(\vec{MC} + \vec{MA})
MC1=12(MA+MB)\vec{MC_1} = \frac{1}{2}(\vec{MA} + \vec{MB})
Now, let's sum these three equations:
MA1+MB1+MC1=12(MB+MC)+12(MC+MA)+12(MA+MB)\vec{MA_1} + \vec{MB_1} + \vec{MC_1} = \frac{1}{2}(\vec{MB} + \vec{MC}) + \frac{1}{2}(\vec{MC} + \vec{MA}) + \frac{1}{2}(\vec{MA} + \vec{MB})
MA1+MB1+MC1=12(MB+MC+MC+MA+MA+MB)\vec{MA_1} + \vec{MB_1} + \vec{MC_1} = \frac{1}{2}(\vec{MB} + \vec{MC} + \vec{MC} + \vec{MA} + \vec{MA} + \vec{MB})
MA1+MB1+MC1=12(2MA+2MB+2MC)\vec{MA_1} + \vec{MB_1} + \vec{MC_1} = \frac{1}{2}(2\vec{MA} + 2\vec{MB} + 2\vec{MC})
MA1+MB1+MC1=MA+MB+MC\vec{MA_1} + \vec{MB_1} + \vec{MC_1} = \vec{MA} + \vec{MB} + \vec{MC}
Thus, we have proven that MA1+MB1+MC1=MA+MB+MC\vec{MA_1} + \vec{MB_1} + \vec{MC_1} = \vec{MA} + \vec{MB} + \vec{MC}.

3. Final Answer

MA1+MB1+MC1=MA+MB+MC\vec{MA_1} + \vec{MB_1} + \vec{MC_1} = \vec{MA} + \vec{MB} + \vec{MC}

Related problems in "Geometry"

We need to describe the domain of the following two functions geometrically: 27. $f(x, y, z) = \sqrt...

3D GeometryDomainSphereHyperboloidMultivariable Calculus
2025/6/3

We need to find the gradient of the line passing through the points $P(2, -3)$ and $Q(5, 3)$.

Coordinate GeometryGradientSlope of a Line
2025/6/3

The problem presents a diagram with a circle and some angles. Given that $\angle PMQ = 34^\circ$ and...

Circle GeometryAnglesCyclic QuadrilateralsInscribed Angles
2025/6/3

In the given diagram, we are given that $∠PMQ = 34°$ and $∠NQM = 28°$. We need to find the measure o...

AnglesCirclesCyclic QuadrilateralsTriangles
2025/6/3

We need to sketch the graph of $f(x, y)$ for the following functions: 7. $f(x, y) = 6$ 8. $f(x, y) =...

3D GeometrySurfacesPlanesCylindersParaboloidsEllipsoidsHemispheres
2025/6/3

The problem provides the measures of the six interior angles of a hexagon in terms of $x$. The task ...

PolygonHexagonInterior AnglesAngle SumAlgebra
2025/6/3

We are asked to describe the graphs of several functions of two variables, $f(x, y)$.

3D GeometryFunctions of Two VariablesPlanesCylindersSpheresEllipsoidsParaboloids
2025/6/3

We are given that a sector of a circle has a radius of 21 cm and subtends an angle of $120^{\circ}$ ...

Arc LengthCirclesSectorTrigonometry
2025/6/3

Problem 30: We are given a right triangle $PQR$ with $\angle PQR = 90^\circ$, $|QR| = 2$ cm, and $\a...

TrigonometryRight TrianglesTriangle Angle SumAngle Ratios
2025/6/3

Question 28: The probability that a seed planted will germinate is 0.75. If 3 of such seeds are plan...

ConeVolumeRadius
2025/6/3