Let $A_1, B_1, C_1$ be the midpoints of sides $BC, CA, AB$ of triangle $ABC$, respectively. Let $M$ be an arbitrary point in the plane of the triangle. Prove that $\vec{MA_1} + \vec{MB_1} + \vec{MC_1} = \vec{MA} + \vec{MB} + \vec{MC}$.

GeometryVectorsTriangle GeometryMidpointsVector AdditionGeometric Proof
2025/3/27

1. Problem Description

Let A1,B1,C1A_1, B_1, C_1 be the midpoints of sides BC,CA,ABBC, CA, AB of triangle ABCABC, respectively. Let MM be an arbitrary point in the plane of the triangle. Prove that MA1+MB1+MC1=MA+MB+MC\vec{MA_1} + \vec{MB_1} + \vec{MC_1} = \vec{MA} + \vec{MB} + \vec{MC}.

2. Solution Steps

We are given that A1A_1, B1B_1, and C1C_1 are midpoints of BCBC, CACA, and ABAB, respectively. Therefore, we have:
MA1=12(MB+MC)\vec{MA_1} = \frac{1}{2}(\vec{MB} + \vec{MC})
MB1=12(MC+MA)\vec{MB_1} = \frac{1}{2}(\vec{MC} + \vec{MA})
MC1=12(MA+MB)\vec{MC_1} = \frac{1}{2}(\vec{MA} + \vec{MB})
Now, let's sum these three equations:
MA1+MB1+MC1=12(MB+MC)+12(MC+MA)+12(MA+MB)\vec{MA_1} + \vec{MB_1} + \vec{MC_1} = \frac{1}{2}(\vec{MB} + \vec{MC}) + \frac{1}{2}(\vec{MC} + \vec{MA}) + \frac{1}{2}(\vec{MA} + \vec{MB})
MA1+MB1+MC1=12(MB+MC+MC+MA+MA+MB)\vec{MA_1} + \vec{MB_1} + \vec{MC_1} = \frac{1}{2}(\vec{MB} + \vec{MC} + \vec{MC} + \vec{MA} + \vec{MA} + \vec{MB})
MA1+MB1+MC1=12(2MA+2MB+2MC)\vec{MA_1} + \vec{MB_1} + \vec{MC_1} = \frac{1}{2}(2\vec{MA} + 2\vec{MB} + 2\vec{MC})
MA1+MB1+MC1=MA+MB+MC\vec{MA_1} + \vec{MB_1} + \vec{MC_1} = \vec{MA} + \vec{MB} + \vec{MC}
Thus, we have proven that MA1+MB1+MC1=MA+MB+MC\vec{MA_1} + \vec{MB_1} + \vec{MC_1} = \vec{MA} + \vec{MB} + \vec{MC}.

3. Final Answer

MA1+MB1+MC1=MA+MB+MC\vec{MA_1} + \vec{MB_1} + \vec{MC_1} = \vec{MA} + \vec{MB} + \vec{MC}

Related problems in "Geometry"

Find the angle at point $K$. Given that the angle at point $M$ is $60^\circ$ and the angle at point ...

AnglesTrianglesParallel Lines
2025/4/12

We are given a line segment $XY$ with coordinates $X(-8, -12)$ and $Y(p, q)$. The midpoint of $XY$ i...

Midpoint FormulaCoordinate GeometryLine Segment
2025/4/11

In the circle $ABCDE$, $EC$ is a diameter. Given that $\angle ABC = 158^{\circ}$, find $\angle ADE$.

CirclesCyclic QuadrilateralsInscribed AnglesAngles in a Circle
2025/4/11

Given the equation of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where $a \neq b$, we need ...

EllipseTangentsLocusCoordinate Geometry
2025/4/11

We are given a cone with base radius $r = 8$ cm and height $h = 11$ cm. We need to calculate the cur...

ConeSurface AreaPythagorean TheoremThree-dimensional Geometry
2025/4/11

$PQRS$ is a cyclic quadrilateral. We are given the measures of its angles in terms of $x$ and $y$. W...

Cyclic QuadrilateralAnglesLinear EquationsSolving Equations
2025/4/11

In the given diagram, line segment $MP$ is a tangent to circle $NQR$ at point $N$. $\angle PNQ = 64^...

Circle GeometryTangentsAnglesTrianglesIsosceles TriangleAlternate Segment Theorem
2025/4/11

We are given a diagram with two parallel lines intersected by two transversals. We need to find the ...

Parallel LinesTransversalsAnglesSupplementary Angles
2025/4/11

A trapezium with sides 10 cm and 21 cm, and height 8 cm is inscribed in a circle of radius 7 cm. The...

AreaTrapeziumCircleArea Calculation
2025/4/11

In circle $PQRS$ with center $O$, $\angle PQR = 72^\circ$ and $OR \parallel PS$. We need to find the...

Circle GeometryAnglesParallel LinesIsosceles Triangle
2025/4/11