a) Let y=(3x2)(x2)(x2+2x+1). First, simplify the expression:
y=3x4(x2+2x+1)=3x6+6x5+3x4. Now, differentiate with respect to x: dxdy=dxd(3x6+6x5+3x4). Using the power rule, dxd(xn)=nxn−1, we get: dxdy=3(6x5)+6(5x4)+3(4x3)=18x5+30x4+12x3. b) Let y=3x+1x2. We need to use the quotient rule:
If y=vu, then dxdy=v2vdxdu−udxdv. Here, u=x2 and v=3x+1. So, dxdu=2x and dxdv=3. Applying the quotient rule:
dxdy=(3x+1)2(3x+1)(2x)−(x2)(3)=(3x+1)26x2+2x−3x2=(3x+1)23x2+2x.