First, multiply both sides of the equation by 1+2sinθ: r(1+2sinθ)=4 r+2rsinθ=4 Now, we use the following conversions:
r=x2+y2 y=rsinθ Substitute these into the equation:
x2+y2+2y=4 Isolate the square root term:
x2+y2=4−2y Square both sides of the equation:
(x2+y2)2=(4−2y)2 x2+y2=16−16y+4y2 Rearrange the terms to get a standard form:
x2+y2−4y2+16y−16=0 x2−3y2+16y−16=0 Complete the square for the y terms: x2−3(y2−316y)−16=0 x2−3(y2−316y+(38)2)−16+3(38)2=0 x2−3(y−38)2−16+3(964)=0 x2−3(y−38)2−16+364=0 x2−3(y−38)2+364−48=0 x2−3(y−38)2+316=0 x2−3(y−38)2=−316 3(y−38)2−x2=316 916(y−38)2−316x2=1