The problem consists of five parts, each requiring differentiation. a) Differentiate $y = 4x^2 - 2x$ from first principles. b) Differentiate $f(x) = (6 + \frac{1}{x^3})$ and find the gradient at $x = 2$. c) Differentiate $2x^3 \cos(3x)$. d) Differentiate $\frac{2x}{x^2 + 1}$. e) Differentiate $(2x^3 - 5x)^5$.

AnalysisDifferentiationCalculusDerivativesFirst PrinciplesProduct RuleQuotient RuleChain Rule
2025/6/10

1. Problem Description

The problem consists of five parts, each requiring differentiation.
a) Differentiate y=4x22xy = 4x^2 - 2x from first principles.
b) Differentiate f(x)=(6+1x3)f(x) = (6 + \frac{1}{x^3}) and find the gradient at x=2x = 2.
c) Differentiate 2x3cos(3x)2x^3 \cos(3x).
d) Differentiate 2xx2+1\frac{2x}{x^2 + 1}.
e) Differentiate (2x35x)5(2x^3 - 5x)^5.

2. Solution Steps

a) Differentiate y=4x22xy = 4x^2 - 2x from first principles.
The definition of derivative from first principles is:
f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
Here, f(x)=4x22xf(x) = 4x^2 - 2x. So,
f(x+h)=4(x+h)22(x+h)=4(x2+2xh+h2)2x2h=4x2+8xh+4h22x2hf(x+h) = 4(x+h)^2 - 2(x+h) = 4(x^2 + 2xh + h^2) - 2x - 2h = 4x^2 + 8xh + 4h^2 - 2x - 2h
f(x+h)f(x)=(4x2+8xh+4h22x2h)(4x22x)=8xh+4h22hf(x+h) - f(x) = (4x^2 + 8xh + 4h^2 - 2x - 2h) - (4x^2 - 2x) = 8xh + 4h^2 - 2h
f(x+h)f(x)h=8xh+4h22hh=8x+4h2\frac{f(x+h) - f(x)}{h} = \frac{8xh + 4h^2 - 2h}{h} = 8x + 4h - 2
f(x)=limh0(8x+4h2)=8x2f'(x) = \lim_{h \to 0} (8x + 4h - 2) = 8x - 2
b) Differentiate f(x)=(6+1x3)f(x) = (6 + \frac{1}{x^3}) and find the gradient at x=2x = 2.
First rewrite the function as f(x)=6+x3f(x) = 6 + x^{-3}.
Then differentiate:
f(x)=3x4=3x4f'(x) = -3x^{-4} = -\frac{3}{x^4}
At x=2x = 2, the gradient is:
f(2)=324=316f'(2) = -\frac{3}{2^4} = -\frac{3}{16}
c) Differentiate 2x3cos(3x)2x^3 \cos(3x).
Use the product rule: (uv)=uv+uv(uv)' = u'v + uv'
Let u=2x3u = 2x^3 and v=cos(3x)v = \cos(3x)
u=6x2u' = 6x^2 and v=3sin(3x)v' = -3\sin(3x)
(2x3cos(3x))=(6x2)cos(3x)+(2x3)(3sin(3x))=6x2cos(3x)6x3sin(3x)(2x^3 \cos(3x))' = (6x^2) \cos(3x) + (2x^3)(-3\sin(3x)) = 6x^2 \cos(3x) - 6x^3 \sin(3x)
d) Differentiate 2xx2+1\frac{2x}{x^2 + 1}.
Use the quotient rule: (uv)=uvuvv2(\frac{u}{v})' = \frac{u'v - uv'}{v^2}
Let u=2xu = 2x and v=x2+1v = x^2 + 1
u=2u' = 2 and v=2xv' = 2x
(2xx2+1)=2(x2+1)2x(2x)(x2+1)2=2x2+24x2(x2+1)2=22x2(x2+1)2(\frac{2x}{x^2 + 1})' = \frac{2(x^2 + 1) - 2x(2x)}{(x^2 + 1)^2} = \frac{2x^2 + 2 - 4x^2}{(x^2 + 1)^2} = \frac{2 - 2x^2}{(x^2 + 1)^2}
e) Differentiate (2x35x)5(2x^3 - 5x)^5.
Use the chain rule: (f(g(x)))=f(g(x))g(x)(f(g(x)))' = f'(g(x))g'(x)
Let f(u)=u5f(u) = u^5 and g(x)=2x35xg(x) = 2x^3 - 5x
f(u)=5u4f'(u) = 5u^4 and g(x)=6x25g'(x) = 6x^2 - 5
((2x35x)5)=5(2x35x)4(6x25)((2x^3 - 5x)^5)' = 5(2x^3 - 5x)^4 (6x^2 - 5)

3. Final Answer

a) 8x28x - 2
b) 316-\frac{3}{16}
c) 6x2cos(3x)6x3sin(3x)6x^2 \cos(3x) - 6x^3 \sin(3x)
d) 22x2(x2+1)2\frac{2 - 2x^2}{(x^2 + 1)^2}
e) 5(2x35x)4(6x25)5(2x^3 - 5x)^4 (6x^2 - 5)

Related problems in "Analysis"

The problem involves analyzing the function $f(x) = 2x - 1 + \ln(\frac{x}{x+1})$. It asks to find th...

Function AnalysisDomainLimitsAsymptotesDerivativesMonotonicityCurve SketchingEquation SolvingNumerical Approximation
2025/6/15

The problem asks us to draw the graph of the function $y = \sin^{-1}(-\sin x)$.

TrigonometryInverse Trigonometric FunctionsGraphingPeriodic Functions
2025/6/14

We are asked to determine whether the function $y = \sqrt{4-x^2} - 2x^2$ is an even function, an odd...

Function AnalysisEven and Odd FunctionsDomain of a FunctionSquare Root Function
2025/6/14

We need to evaluate the limit of the given expression as $x$ approaches 3: $$ \lim_{x\to 3} \frac{9-...

LimitsCalculusDirect Substitution
2025/6/14

We are asked to evaluate the integral: $I = \int \frac{2x+1}{2x+3} dx$

IntegrationDefinite IntegralsSubstitution
2025/6/14

The problem asks to find the equation of the tangent line to the curve defined by the function $f(x)...

CalculusDerivativesTangent LinesFunctionsCubic Functions
2025/6/12

We want to find the limit of the expression $\frac{\sin x - \sin x \cdot \cos x}{x^3}$ as $x$ approa...

LimitsTrigonometryL'Hopital's RuleCalculus
2025/6/11

The problem asks to find the derivative $y'$ of the function $y = \frac{2x}{\sqrt{x^2 + 2x + 2}}$. W...

DifferentiationChain RuleQuotient RuleDerivatives
2025/6/11

The problem asks to find the derivative $dy/dx$ given the equation $x = 5y^2 + 4/\sqrt{y}$. The answ...

CalculusDifferentiationImplicit DifferentiationDerivatives
2025/6/11

The problem is to find $\frac{dy}{dx}$ given the equation $\sin x + \frac{\log(2y)}{4y} = 5$. We nee...

CalculusImplicit DifferentiationDerivativesQuotient RuleLogarithmic Function
2025/6/11