b) To evaluate ( 1 − 3 i ) 8 (1 - \sqrt{3}i)^8 ( 1 − 3 i ) 8 using De Moivre's theorem, we first convert the complex number 1 − 3 i 1 - \sqrt{3}i 1 − 3 i to polar form. The modulus is r = 1 2 + ( − 3 ) 2 = 1 + 3 = 4 = 2 r = \sqrt{1^2 + (-\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2 r = 1 2 + ( − 3 ) 2 = 1 + 3 = 4 = 2 . The argument is θ = arctan ( − 3 1 ) = − π 3 \theta = \arctan\left(\frac{-\sqrt{3}}{1}\right) = -\frac{\pi}{3} θ = arctan ( 1 − 3 ) = − 3 π . So, 1 − 3 i = 2 ( cos ( − π 3 ) + i sin ( − π 3 ) ) 1 - \sqrt{3}i = 2\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right) 1 − 3 i = 2 ( cos ( − 3 π ) + i sin ( − 3 π ) ) . Using De Moivre's theorem, we have
( 1 − 3 i ) 8 = [ 2 ( cos ( − π 3 ) + i sin ( − π 3 ) ) ] 8 = 2 8 ( cos ( − 8 π 3 ) + i sin ( − 8 π 3 ) ) (1 - \sqrt{3}i)^8 = \left[2\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right)\right]^8 = 2^8\left(\cos\left(-\frac{8\pi}{3}\right) + i\sin\left(-\frac{8\pi}{3}\right)\right) ( 1 − 3 i ) 8 = [ 2 ( cos ( − 3 π ) + i sin ( − 3 π ) ) ] 8 = 2 8 ( cos ( − 3 8 π ) + i sin ( − 3 8 π ) ) . Since − 8 π 3 = − 6 π 3 − 2 π 3 = − 2 π − 2 π 3 -\frac{8\pi}{3} = -\frac{6\pi}{3} - \frac{2\pi}{3} = -2\pi - \frac{2\pi}{3} − 3 8 π = − 3 6 π − 3 2 π = − 2 π − 3 2 π , cos ( − 8 π 3 ) = cos ( − 2 π 3 ) = − 1 2 \cos\left(-\frac{8\pi}{3}\right) = \cos\left(-\frac{2\pi}{3}\right) = -\frac{1}{2} cos ( − 3 8 π ) = cos ( − 3 2 π ) = − 2 1 and sin ( − 8 π 3 ) = sin ( − 2 π 3 ) = − 3 2 \sin\left(-\frac{8\pi}{3}\right) = \sin\left(-\frac{2\pi}{3}\right) = -\frac{\sqrt{3}}{2} sin ( − 3 8 π ) = sin ( − 3 2 π ) = − 2 3 . Therefore, ( 1 − 3 i ) 8 = 2 8 ( − 1 2 − i 3 2 ) = 256 ( − 1 2 − i 3 2 ) = − 128 − 128 3 i (1 - \sqrt{3}i)^8 = 2^8\left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right) = 256\left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right) = -128 - 128\sqrt{3}i ( 1 − 3 i ) 8 = 2 8 ( − 2 1 − i 2 3 ) = 256 ( − 2 1 − i 2 3 ) = − 128 − 128 3 i .
c) To find the roots of ( 3 − i ) 1 5 (\sqrt{3} - i)^{\frac{1}{5}} ( 3 − i ) 5 1 , we first convert the complex number 3 − i \sqrt{3} - i 3 − i to polar form. The modulus is r = ( 3 ) 2 + ( − 1 ) 2 = 3 + 1 = 4 = 2 r = \sqrt{(\sqrt{3})^2 + (-1)^2} = \sqrt{3 + 1} = \sqrt{4} = 2 r = ( 3 ) 2 + ( − 1 ) 2 = 3 + 1 = 4 = 2 . The argument is θ = arctan ( − 1 3 ) = − π 6 \theta = \arctan\left(\frac{-1}{\sqrt{3}}\right) = -\frac{\pi}{6} θ = arctan ( 3 − 1 ) = − 6 π . So, 3 − i = 2 ( cos ( − π 6 ) + i sin ( − π 6 ) ) \sqrt{3} - i = 2\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right) 3 − i = 2 ( cos ( − 6 π ) + i sin ( − 6 π ) ) . Then ( 3 − i ) 1 5 = [ 2 ( cos ( − π 6 ) + i sin ( − π 6 ) ) ] 1 5 = 2 1 5 ( cos ( − π 6 + 2 k π 5 ) + i sin ( − π 6 + 2 k π 5 ) ) (\sqrt{3} - i)^{\frac{1}{5}} = \left[2\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right)\right]^{\frac{1}{5}} = 2^{\frac{1}{5}}\left(\cos\left(\frac{-\frac{\pi}{6} + 2k\pi}{5}\right) + i\sin\left(\frac{-\frac{\pi}{6} + 2k\pi}{5}\right)\right) ( 3 − i ) 5 1 = [ 2 ( cos ( − 6 π ) + i sin ( − 6 π ) ) ] 5 1 = 2 5 1 ( cos ( 5 − 6 π + 2 kπ ) + i sin ( 5 − 6 π + 2 kπ ) ) for k = 0 , 1 , 2 , 3 , 4 k = 0, 1, 2, 3, 4 k = 0 , 1 , 2 , 3 , 4 . The roots are 2 1 5 ( cos ( − π + 12 k π 30 ) + i sin ( − π + 12 k π 30 ) ) 2^{\frac{1}{5}}\left(\cos\left(\frac{-\pi + 12k\pi}{30}\right) + i\sin\left(\frac{-\pi + 12k\pi}{30}\right)\right) 2 5 1 ( cos ( 30 − π + 12 kπ ) + i sin ( 30 − π + 12 kπ ) ) for k = 0 , 1 , 2 , 3 , 4 k = 0, 1, 2, 3, 4 k = 0 , 1 , 2 , 3 , 4 . The roots are 2 1 5 ( cos ( − π 30 ) + i sin ( − π 30 ) ) 2^{\frac{1}{5}}\left(\cos\left(-\frac{\pi}{30}\right) + i\sin\left(-\frac{\pi}{30}\right)\right) 2 5 1 ( cos ( − 30 π ) + i sin ( − 30 π ) ) , 2 1 5 ( cos ( 11 π 30 ) + i sin ( 11 π 30 ) ) 2^{\frac{1}{5}}\left(\cos\left(\frac{11\pi}{30}\right) + i\sin\left(\frac{11\pi}{30}\right)\right) 2 5 1 ( cos ( 30 11 π ) + i sin ( 30 11 π ) ) , 2 1 5 ( cos ( 23 π 30 ) + i sin ( 23 π 30 ) ) 2^{\frac{1}{5}}\left(\cos\left(\frac{23\pi}{30}\right) + i\sin\left(\frac{23\pi}{30}\right)\right) 2 5 1 ( cos ( 30 23 π ) + i sin ( 30 23 π ) ) , 2 1 5 ( cos ( 35 π 30 ) + i sin ( 35 π 30 ) ) = 2 1 5 ( cos ( 7 π 6 ) + i sin ( 7 π 6 ) ) 2^{\frac{1}{5}}\left(\cos\left(\frac{35\pi}{30}\right) + i\sin\left(\frac{35\pi}{30}\right)\right) = 2^{\frac{1}{5}}\left(\cos\left(\frac{7\pi}{6}\right) + i\sin\left(\frac{7\pi}{6}\right)\right) 2 5 1 ( cos ( 30 35 π ) + i sin ( 30 35 π ) ) = 2 5 1 ( cos ( 6 7 π ) + i sin ( 6 7 π ) ) , 2 1 5 ( cos ( 47 π 30 ) + i sin ( 47 π 30 ) ) 2^{\frac{1}{5}}\left(\cos\left(\frac{47\pi}{30}\right) + i\sin\left(\frac{47\pi}{30}\right)\right) 2 5 1 ( cos ( 30 47 π ) + i sin ( 30 47 π ) ) .