The problem asks to evaluate two complex number related expressions: b) Evaluate $(1 - \sqrt{3}i)^8$ using De Moivre's theorem. c) Find the roots of $(\sqrt{3} - i)^{\frac{1}{5}}$.

AlgebraComplex NumbersDe Moivre's TheoremRoots of Complex NumbersPolar Form of Complex Numbers
2025/6/15

1. Problem Description

The problem asks to evaluate two complex number related expressions:
b) Evaluate (13i)8(1 - \sqrt{3}i)^8 using De Moivre's theorem.
c) Find the roots of (3i)15(\sqrt{3} - i)^{\frac{1}{5}}.

2. Solution Steps

b) To evaluate (13i)8(1 - \sqrt{3}i)^8 using De Moivre's theorem, we first convert the complex number 13i1 - \sqrt{3}i to polar form.
The modulus is r=12+(3)2=1+3=4=2r = \sqrt{1^2 + (-\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2.
The argument is θ=arctan(31)=π3\theta = \arctan\left(\frac{-\sqrt{3}}{1}\right) = -\frac{\pi}{3}.
So, 13i=2(cos(π3)+isin(π3))1 - \sqrt{3}i = 2\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right).
Using De Moivre's theorem, we have
(13i)8=[2(cos(π3)+isin(π3))]8=28(cos(8π3)+isin(8π3))(1 - \sqrt{3}i)^8 = \left[2\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right)\right]^8 = 2^8\left(\cos\left(-\frac{8\pi}{3}\right) + i\sin\left(-\frac{8\pi}{3}\right)\right).
Since 8π3=6π32π3=2π2π3-\frac{8\pi}{3} = -\frac{6\pi}{3} - \frac{2\pi}{3} = -2\pi - \frac{2\pi}{3},
cos(8π3)=cos(2π3)=12\cos\left(-\frac{8\pi}{3}\right) = \cos\left(-\frac{2\pi}{3}\right) = -\frac{1}{2} and
sin(8π3)=sin(2π3)=32\sin\left(-\frac{8\pi}{3}\right) = \sin\left(-\frac{2\pi}{3}\right) = -\frac{\sqrt{3}}{2}.
Therefore, (13i)8=28(12i32)=256(12i32)=1281283i(1 - \sqrt{3}i)^8 = 2^8\left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right) = 256\left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right) = -128 - 128\sqrt{3}i.
c) To find the roots of (3i)15(\sqrt{3} - i)^{\frac{1}{5}}, we first convert the complex number 3i\sqrt{3} - i to polar form.
The modulus is r=(3)2+(1)2=3+1=4=2r = \sqrt{(\sqrt{3})^2 + (-1)^2} = \sqrt{3 + 1} = \sqrt{4} = 2.
The argument is θ=arctan(13)=π6\theta = \arctan\left(\frac{-1}{\sqrt{3}}\right) = -\frac{\pi}{6}.
So, 3i=2(cos(π6)+isin(π6))\sqrt{3} - i = 2\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right).
Then (3i)15=[2(cos(π6)+isin(π6))]15=215(cos(π6+2kπ5)+isin(π6+2kπ5))(\sqrt{3} - i)^{\frac{1}{5}} = \left[2\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right)\right]^{\frac{1}{5}} = 2^{\frac{1}{5}}\left(\cos\left(\frac{-\frac{\pi}{6} + 2k\pi}{5}\right) + i\sin\left(\frac{-\frac{\pi}{6} + 2k\pi}{5}\right)\right) for k=0,1,2,3,4k = 0, 1, 2, 3, 4.
The roots are 215(cos(π+12kπ30)+isin(π+12kπ30))2^{\frac{1}{5}}\left(\cos\left(\frac{-\pi + 12k\pi}{30}\right) + i\sin\left(\frac{-\pi + 12k\pi}{30}\right)\right) for k=0,1,2,3,4k = 0, 1, 2, 3, 4.
The roots are 215(cos(π30)+isin(π30))2^{\frac{1}{5}}\left(\cos\left(-\frac{\pi}{30}\right) + i\sin\left(-\frac{\pi}{30}\right)\right),
215(cos(11π30)+isin(11π30))2^{\frac{1}{5}}\left(\cos\left(\frac{11\pi}{30}\right) + i\sin\left(\frac{11\pi}{30}\right)\right),
215(cos(23π30)+isin(23π30))2^{\frac{1}{5}}\left(\cos\left(\frac{23\pi}{30}\right) + i\sin\left(\frac{23\pi}{30}\right)\right),
215(cos(35π30)+isin(35π30))=215(cos(7π6)+isin(7π6))2^{\frac{1}{5}}\left(\cos\left(\frac{35\pi}{30}\right) + i\sin\left(\frac{35\pi}{30}\right)\right) = 2^{\frac{1}{5}}\left(\cos\left(\frac{7\pi}{6}\right) + i\sin\left(\frac{7\pi}{6}\right)\right),
215(cos(47π30)+isin(47π30))2^{\frac{1}{5}}\left(\cos\left(\frac{47\pi}{30}\right) + i\sin\left(\frac{47\pi}{30}\right)\right).

3. Final Answer

b) (13i)8=1281283i(1 - \sqrt{3}i)^8 = -128 - 128\sqrt{3}i
c) The roots of (3i)15(\sqrt{3} - i)^{\frac{1}{5}} are 215(cos((12k1)π30)+isin((12k1)π30))2^{\frac{1}{5}}\left(\cos\left(\frac{(12k-1)\pi}{30}\right) + i\sin\left(\frac{(12k-1)\pi}{30}\right)\right) for k=0,1,2,3,4k = 0, 1, 2, 3, 4.
In particular, the roots are:
215(cos(π30)+isin(π30))2^{\frac{1}{5}}\left(\cos\left(-\frac{\pi}{30}\right) + i\sin\left(-\frac{\pi}{30}\right)\right),
215(cos(11π30)+isin(11π30))2^{\frac{1}{5}}\left(\cos\left(\frac{11\pi}{30}\right) + i\sin\left(\frac{11\pi}{30}\right)\right),
215(cos(23π30)+isin(23π30))2^{\frac{1}{5}}\left(\cos\left(\frac{23\pi}{30}\right) + i\sin\left(\frac{23\pi}{30}\right)\right),
215(cos(7π6)+isin(7π6))2^{\frac{1}{5}}\left(\cos\left(\frac{7\pi}{6}\right) + i\sin\left(\frac{7\pi}{6}\right)\right),
215(cos(47π30)+isin(47π30))2^{\frac{1}{5}}\left(\cos\left(\frac{47\pi}{30}\right) + i\sin\left(\frac{47\pi}{30}\right)\right).

Related problems in "Algebra"

The problem consists of two questions. Question 1 asks to rewrite expressions with negative exponent...

ExponentsAlgebraic ExpressionsSimplification
2025/6/16

A group of farmers are plowing a field together. If we count both the cows and the farmers, there ar...

Systems of EquationsWord ProblemLinear Equations
2025/6/15

A rectangle has a width of 2 cm and a length of 9 cm. The width is increased by 1 cm and the length...

AreaRectangleLinear EquationsWord Problem
2025/6/15

We need to show that the dot product of a vector with itself is equal to the square of the magnitude...

VectorsDot ProductMagnitudeVector Spaces
2025/6/15

The problem describes a middle school where the total number of students last year was 440. This yea...

Systems of EquationsWord ProblemsPercentage Change
2025/6/15

We need to solve the following equation for $x$: $7.511 - [7.88 - (150.12 / x - 1.24)] / 0.48 = 1.01...

Equation SolvingLinear EquationsAlgebraic Manipulation
2025/6/15

We are given the equation $2.8x + 53 = 1000 - x = 3900$ and asked to solve for $x$. It seems like th...

Linear EquationsSolving EquationsAlgebraic Manipulation
2025/6/15

We need to solve the equation $9.501 - [(101.25 + x - 2.94) + 2.36] + 0.52 = 1.001$ for $x$.

Equation SolvingLinear EquationsOrder of Operations
2025/6/15

The problem asks us to verify the following trigonometric identity: $\frac{\cos x}{1 + \sin x} + \fr...

TrigonometryTrigonometric IdentitiesAlgebraic Manipulation
2025/6/15

We are given that $\sin \alpha - \cos \alpha = \frac{7}{13}$. We need to find the value of $A$, wher...

TrigonometryAlgebraic ManipulationTrigonometric IdentitiesAbsolute ValueSolving Equations
2025/6/15