First, square the given equation:
( sin α − cos α ) 2 = ( 7 13 ) 2 (\sin \alpha - \cos \alpha)^2 = (\frac{7}{13})^2 ( sin α − cos α ) 2 = ( 13 7 ) 2 sin 2 α − 2 sin α cos α + cos 2 α = 49 169 \sin^2 \alpha - 2\sin \alpha \cos \alpha + \cos^2 \alpha = \frac{49}{169} sin 2 α − 2 sin α cos α + cos 2 α = 169 49 Since sin 2 α + cos 2 α = 1 \sin^2 \alpha + \cos^2 \alpha = 1 sin 2 α + cos 2 α = 1 , we have: 1 − 2 sin α cos α = 49 169 1 - 2\sin \alpha \cos \alpha = \frac{49}{169} 1 − 2 sin α cos α = 169 49 2 sin α cos α = 1 − 49 169 = 169 − 49 169 = 120 169 2\sin \alpha \cos \alpha = 1 - \frac{49}{169} = \frac{169 - 49}{169} = \frac{120}{169} 2 sin α cos α = 1 − 169 49 = 169 169 − 49 = 169 120 sin α cos α = 60 169 \sin \alpha \cos \alpha = \frac{60}{169} sin α cos α = 169 60
Next, consider ( sin α + cos α ) 2 (\sin \alpha + \cos \alpha)^2 ( sin α + cos α ) 2 : ( sin α + cos α ) 2 = sin 2 α + 2 sin α cos α + cos 2 α = 1 + 2 sin α cos α (\sin \alpha + \cos \alpha)^2 = \sin^2 \alpha + 2\sin \alpha \cos \alpha + \cos^2 \alpha = 1 + 2\sin \alpha \cos \alpha ( sin α + cos α ) 2 = sin 2 α + 2 sin α cos α + cos 2 α = 1 + 2 sin α cos α ( sin α + cos α ) 2 = 1 + 2 ( 60 169 ) = 1 + 120 169 = 169 + 120 169 = 289 169 (\sin \alpha + \cos \alpha)^2 = 1 + 2(\frac{60}{169}) = 1 + \frac{120}{169} = \frac{169 + 120}{169} = \frac{289}{169} ( sin α + cos α ) 2 = 1 + 2 ( 169 60 ) = 1 + 169 120 = 169 169 + 120 = 169 289 Therefore, sin α + cos α = ± 289 169 = ± 17 13 \sin \alpha + \cos \alpha = \pm\sqrt{\frac{289}{169}} = \pm\frac{17}{13} sin α + cos α = ± 169 289 = ± 13 17 .
Now we evaluate the denominator of A:
4 + 169 sin α cos α = 4 + 169 ( 60 169 ) = 4 + 60 = 64 = 8 \sqrt{4 + 169\sin \alpha \cos \alpha} = \sqrt{4 + 169(\frac{60}{169})} = \sqrt{4 + 60} = \sqrt{64} = 8 4 + 169 sin α cos α = 4 + 169 ( 169 60 ) = 4 + 60 = 64 = 8
We have two possible values for sin α + cos α \sin \alpha + \cos \alpha sin α + cos α , namely 17 13 \frac{17}{13} 13 17 and − 17 13 -\frac{17}{13} − 13 17 .
Case 1: sin α + cos α = 17 13 \sin \alpha + \cos \alpha = \frac{17}{13} sin α + cos α = 13 17 A = 1 − 13 ∣ 17 13 ∣ 8 = 1 − 13 ( 17 13 ) 8 = 1 − 17 8 = − 16 8 = − 2 A = \frac{1 - 13|\frac{17}{13}|}{8} = \frac{1 - 13(\frac{17}{13})}{8} = \frac{1 - 17}{8} = \frac{-16}{8} = -2 A = 8 1 − 13∣ 13 17 ∣ = 8 1 − 13 ( 13 17 ) = 8 1 − 17 = 8 − 16 = − 2
Case 2: sin α + cos α = − 17 13 \sin \alpha + \cos \alpha = -\frac{17}{13} sin α + cos α = − 13 17 A = 1 − 13 ∣ − 17 13 ∣ 8 = 1 − 13 ( 17 13 ) 8 = 1 − 17 8 = − 16 8 = − 2 A = \frac{1 - 13|-\frac{17}{13}|}{8} = \frac{1 - 13(\frac{17}{13})}{8} = \frac{1 - 17}{8} = \frac{-16}{8} = -2 A = 8 1 − 13∣ − 13 17 ∣ = 8 1 − 13 ( 13 17 ) = 8 1 − 17 = 8 − 16 = − 2
In either case, A = − 2 A = -2 A = − 2 .