We are given that $\sin \alpha - \cos \alpha = \frac{7}{13}$. We need to find the value of $A$, where $A = \frac{1 - 13|\sin \alpha + \cos \alpha|}{\sqrt{4 + 169\sin \alpha \cos \alpha}}$.

AlgebraTrigonometryAlgebraic ManipulationTrigonometric IdentitiesAbsolute ValueSolving Equations
2025/6/15

1. Problem Description

We are given that sinαcosα=713\sin \alpha - \cos \alpha = \frac{7}{13}. We need to find the value of AA, where A=113sinα+cosα4+169sinαcosαA = \frac{1 - 13|\sin \alpha + \cos \alpha|}{\sqrt{4 + 169\sin \alpha \cos \alpha}}.

2. Solution Steps

First, square the given equation:
(sinαcosα)2=(713)2(\sin \alpha - \cos \alpha)^2 = (\frac{7}{13})^2
sin2α2sinαcosα+cos2α=49169\sin^2 \alpha - 2\sin \alpha \cos \alpha + \cos^2 \alpha = \frac{49}{169}
Since sin2α+cos2α=1\sin^2 \alpha + \cos^2 \alpha = 1, we have:
12sinαcosα=491691 - 2\sin \alpha \cos \alpha = \frac{49}{169}
2sinαcosα=149169=16949169=1201692\sin \alpha \cos \alpha = 1 - \frac{49}{169} = \frac{169 - 49}{169} = \frac{120}{169}
sinαcosα=60169\sin \alpha \cos \alpha = \frac{60}{169}
Next, consider (sinα+cosα)2(\sin \alpha + \cos \alpha)^2:
(sinα+cosα)2=sin2α+2sinαcosα+cos2α=1+2sinαcosα(\sin \alpha + \cos \alpha)^2 = \sin^2 \alpha + 2\sin \alpha \cos \alpha + \cos^2 \alpha = 1 + 2\sin \alpha \cos \alpha
(sinα+cosα)2=1+2(60169)=1+120169=169+120169=289169(\sin \alpha + \cos \alpha)^2 = 1 + 2(\frac{60}{169}) = 1 + \frac{120}{169} = \frac{169 + 120}{169} = \frac{289}{169}
Therefore, sinα+cosα=±289169=±1713\sin \alpha + \cos \alpha = \pm\sqrt{\frac{289}{169}} = \pm\frac{17}{13}.
Now we evaluate the denominator of A:
4+169sinαcosα=4+169(60169)=4+60=64=8\sqrt{4 + 169\sin \alpha \cos \alpha} = \sqrt{4 + 169(\frac{60}{169})} = \sqrt{4 + 60} = \sqrt{64} = 8
We have two possible values for sinα+cosα\sin \alpha + \cos \alpha, namely 1713\frac{17}{13} and 1713-\frac{17}{13}.
Case 1: sinα+cosα=1713\sin \alpha + \cos \alpha = \frac{17}{13}
A=11317138=113(1713)8=1178=168=2A = \frac{1 - 13|\frac{17}{13}|}{8} = \frac{1 - 13(\frac{17}{13})}{8} = \frac{1 - 17}{8} = \frac{-16}{8} = -2
Case 2: sinα+cosα=1713\sin \alpha + \cos \alpha = -\frac{17}{13}
A=11317138=113(1713)8=1178=168=2A = \frac{1 - 13|-\frac{17}{13}|}{8} = \frac{1 - 13(\frac{17}{13})}{8} = \frac{1 - 17}{8} = \frac{-16}{8} = -2
In either case, A=2A = -2.

3. Final Answer

-2

Related problems in "Algebra"

The problem is to solve the quadratic equation $55n^2 - 33n - 1940 = 0$ for the variable $n$.

Quadratic EquationsQuadratic FormulaRoots of Equation
2025/7/25

We need to solve the equation $\frac{x+6}{x+4} = \frac{-5}{3x}$ for $x$.

EquationsRational EquationsQuadratic EquationsSolving EquationsAlgebraic Manipulation
2025/7/24

The problem asks to factorize the quadratic expression $3x^2 - 2x - 1$.

Quadratic EquationsFactorizationAlgebraic Manipulation
2025/7/24

We are asked to solve four problems: (a) Expand and simplify the expression $6(2y-3) - 5(y+1)$. (b) ...

Algebraic SimplificationExponentsDifference of SquaresEquationsFactorization
2025/7/22

We are asked to simplify the expression $(a^{-2}b^3)^{-2}$, writing the answer with positive powers.

ExponentsSimplificationPower Rules
2025/7/22

A group of children bought a certain number of apples. If each apple is cut into 4 equal pieces and ...

System of EquationsWord Problem
2025/7/21

The problem asks to simplify the expression $\frac{x+1}{y} \div \frac{2(x+1)}{x}$.

Algebraic simplificationFractionsVariable expressions
2025/7/21

A group of children bought some apples. If each apple is divided into 4 equal pieces and 1 piece is ...

Linear EquationsSystems of EquationsWord Problem
2025/7/21

We need to find the value of the expression $6 + \log_b(\frac{1}{b^3}) + \log_b(\sqrt{b})$.

LogarithmsExponentsSimplification
2025/7/20

We need to solve the following equation for $y$: $\frac{y-1}{3} = \frac{2y+1}{5}$

Linear EquationsSolving EquationsAlgebraic Manipulation
2025/7/20