We are given that $\sin \alpha - \cos \alpha = \frac{7}{13}$. We need to find the value of $A$, where $A = \frac{1 - 13|\sin \alpha + \cos \alpha|}{\sqrt{4 + 169\sin \alpha \cos \alpha}}$.

AlgebraTrigonometryAlgebraic ManipulationTrigonometric IdentitiesAbsolute ValueSolving Equations
2025/6/15

1. Problem Description

We are given that sinαcosα=713\sin \alpha - \cos \alpha = \frac{7}{13}. We need to find the value of AA, where A=113sinα+cosα4+169sinαcosαA = \frac{1 - 13|\sin \alpha + \cos \alpha|}{\sqrt{4 + 169\sin \alpha \cos \alpha}}.

2. Solution Steps

First, square the given equation:
(sinαcosα)2=(713)2(\sin \alpha - \cos \alpha)^2 = (\frac{7}{13})^2
sin2α2sinαcosα+cos2α=49169\sin^2 \alpha - 2\sin \alpha \cos \alpha + \cos^2 \alpha = \frac{49}{169}
Since sin2α+cos2α=1\sin^2 \alpha + \cos^2 \alpha = 1, we have:
12sinαcosα=491691 - 2\sin \alpha \cos \alpha = \frac{49}{169}
2sinαcosα=149169=16949169=1201692\sin \alpha \cos \alpha = 1 - \frac{49}{169} = \frac{169 - 49}{169} = \frac{120}{169}
sinαcosα=60169\sin \alpha \cos \alpha = \frac{60}{169}
Next, consider (sinα+cosα)2(\sin \alpha + \cos \alpha)^2:
(sinα+cosα)2=sin2α+2sinαcosα+cos2α=1+2sinαcosα(\sin \alpha + \cos \alpha)^2 = \sin^2 \alpha + 2\sin \alpha \cos \alpha + \cos^2 \alpha = 1 + 2\sin \alpha \cos \alpha
(sinα+cosα)2=1+2(60169)=1+120169=169+120169=289169(\sin \alpha + \cos \alpha)^2 = 1 + 2(\frac{60}{169}) = 1 + \frac{120}{169} = \frac{169 + 120}{169} = \frac{289}{169}
Therefore, sinα+cosα=±289169=±1713\sin \alpha + \cos \alpha = \pm\sqrt{\frac{289}{169}} = \pm\frac{17}{13}.
Now we evaluate the denominator of A:
4+169sinαcosα=4+169(60169)=4+60=64=8\sqrt{4 + 169\sin \alpha \cos \alpha} = \sqrt{4 + 169(\frac{60}{169})} = \sqrt{4 + 60} = \sqrt{64} = 8
We have two possible values for sinα+cosα\sin \alpha + \cos \alpha, namely 1713\frac{17}{13} and 1713-\frac{17}{13}.
Case 1: sinα+cosα=1713\sin \alpha + \cos \alpha = \frac{17}{13}
A=11317138=113(1713)8=1178=168=2A = \frac{1 - 13|\frac{17}{13}|}{8} = \frac{1 - 13(\frac{17}{13})}{8} = \frac{1 - 17}{8} = \frac{-16}{8} = -2
Case 2: sinα+cosα=1713\sin \alpha + \cos \alpha = -\frac{17}{13}
A=11317138=113(1713)8=1178=168=2A = \frac{1 - 13|-\frac{17}{13}|}{8} = \frac{1 - 13(\frac{17}{13})}{8} = \frac{1 - 17}{8} = \frac{-16}{8} = -2
In either case, A=2A = -2.

3. Final Answer

-2

Related problems in "Algebra"

We need to solve the following equation for $x$: $7.511 - [7.88 - (150.12 / x - 1.24)] / 0.48 = 1.01...

Equation SolvingLinear EquationsAlgebraic Manipulation
2025/6/15

We are given the equation $2.8x + 53 = 1000 - x = 3900$ and asked to solve for $x$. It seems like th...

Linear EquationsSolving EquationsAlgebraic Manipulation
2025/6/15

We need to solve the equation $9.501 - [(101.25 + x - 2.94) + 2.36] + 0.52 = 1.001$ for $x$.

Equation SolvingLinear EquationsOrder of Operations
2025/6/15

The problem asks us to verify the following trigonometric identity: $\frac{\cos x}{1 + \sin x} + \fr...

TrigonometryTrigonometric IdentitiesAlgebraic Manipulation
2025/6/15

Krystyna has some raisins. She gave one fourth of her raisins to Irena. She then eats 6 raisins, aft...

Word ProblemLinear EquationsProblem Solving
2025/6/14

Given that the graph of the function is symmetric with respect to the origin, and $f(2) = 1$, find t...

FunctionsOdd FunctionsSymmetry
2025/6/14

The problem asks to find the value of $a_4$ in a geometric sequence $\{a_n\}$, given that $a_1 = 2$ ...

Sequences and SeriesGeometric SequenceFinding a term
2025/6/14

We are asked to find the inverse function of $y = \sqrt{x-2} + 1$ for $x \ge 2$.

Inverse FunctionsFunctionsSquare RootsDomain and Range
2025/6/14

The problem asks to find the graph of the function $f(x) = 0.5^x$. This is an exponential function o...

Exponential FunctionsGraphingFunction AnalysisExponents
2025/6/14

The problem asks us to find the geometric mean (or the equal ratio middle term) of $\sqrt{2}$ and $\...

Geometric MeanSequences and SeriesRadicals
2025/6/14