First, let's find a common denominator for the left-hand side (LHS) of the equation:
1+sinxcosx+1+cosxsinx=(1+sinx)(1+cosx)cosx(1+cosx)+sinx(1+sinx) Expanding the numerator, we get:
cosx+cos2x+sinx+sin2x We know that sin2x+cos2x=1. So, the numerator becomes: cosx+sinx+1 Expanding the denominator, we get:
(1+sinx)(1+cosx)=1+cosx+sinx+sinxcosx Therefore, the LHS becomes:
1+sinx+cosx+sinxcosx1+sinx+cosx Now, let's work with the right-hand side (RHS) of the equation:
2(1+sinx+cosx)1 We want to show that
1+sinx+cosx+sinxcosx1+sinx+cosx=2(1+sinx+cosx)1 Cross-multiplying, we have:
2(1+sinx+cosx)(1+sinx+cosx)=1+sinx+cosx+sinxcosx 2(1+sinx+cosx+sinx+sin2x+sinxcosx+cosx+sinxcosx+cos2x)=1+sinx+cosx+sinxcosx 2(1+2sinx+2cosx+sin2x+cos2x+2sinxcosx)=1+sinx+cosx+sinxcosx Since sin2x+cos2x=1: 2(2+2sinx+2cosx+2sinxcosx)=1+sinx+cosx+sinxcosx 4+4sinx+4cosx+4sinxcosx=1+sinx+cosx+sinxcosx 3+3sinx+3cosx+3sinxcosx=0 3(1+sinx+cosx+sinxcosx)=0 1+sinx+cosx+sinxcosx=0 We see a mistake in the original question. The correct equation may be
1+sinxcosx+1+cosxsinx=1+sinx+cosx+sinxcosx2. Or the correct equation may be 1+sinxcosx+1+cosxsinx=1+sinx+cosx+sinxcosx1+sinx+cosx.