Given a regular hexagon $ABCDEF$, with $\vec{AB} = \vec{p}$ and $\vec{BC} = \vec{q}$, express the vectors $\vec{CD}, \vec{DE}, \vec{EF}, \vec{FA}, \vec{AD}, \vec{EA}, \vec{AC}$ in terms of $\vec{p}$ and $\vec{q}$.

GeometryVectorsGeometryHexagon
2025/3/29

1. Problem Description

Given a regular hexagon ABCDEFABCDEF, with AB=p\vec{AB} = \vec{p} and BC=q\vec{BC} = \vec{q}, express the vectors CD,DE,EF,FA,AD,EA,AC\vec{CD}, \vec{DE}, \vec{EF}, \vec{FA}, \vec{AD}, \vec{EA}, \vec{AC} in terms of p\vec{p} and q\vec{q}.

2. Solution Steps

Since ABCDEFABCDEF is a regular hexagon, we can deduce the relationships between the sides.
CD\vec{CD} is parallel to FA\vec{FA} and equal in length to AB\vec{AB}, but pointing in the opposite direction to AB\vec{AB} rotated 60 degrees counter-clockwise. We can also say CD\vec{CD} is equal to a negative rotation of AB\vec{AB}. But we need to express it in terms of p\vec{p} and q\vec{q}. Also, CD\vec{CD} is parallel to BA\vec{BA} shifted by the vector BC\vec{BC}.
CD=BA+BC+BCBC=BA\vec{CD} = \vec{BA} + \vec{BC} + \vec{BC} - \vec{BC} = \vec{BA}.
Since BA=AB=p\vec{BA} = -\vec{AB} = -\vec{p}.
CD=p+q+(qp)=AB+BC\vec{CD} = -\vec{p} + \vec{q} + (\vec{q} - \vec{p}) = -\vec{AB} + \vec{BC}. CD=BA+CF\vec{CD} = \vec{BA} + \vec{CF}
AC=AB+BC=p+q\vec{AC} = \vec{AB} + \vec{BC} = \vec{p} + \vec{q}.
CD\vec{CD} can be expressed as BA\vec{BA} translated by BC=q\vec{BC} = \vec{q}. The angle between p\vec{p} and q\vec{q} is 120 degrees.
CD=BA+q=EF\vec{CD} = \vec{BA} + \vec{q} = \vec{EF}
DE=q\vec{DE} = -\vec{q}
EF=p\vec{EF} = -\vec{p}
FA=pq\vec{FA} = \vec{p}-\vec{q}
AD=AB+BC+CD=AB+BC+CD=p+q+CD=AC+CE\vec{AD} = \vec{AB}+\vec{BC}+\vec{CD}= \vec{AB} + \vec{BC} + \vec{CD} = \vec{p}+\vec{q}+\vec{CD} = \vec{AC} + \vec{CE}
Also, AD=2BC=2q\vec{AD}=2\vec{BC}=2\vec{q}
CD=qp\vec{CD} = \vec{q} - \vec{p}
DE=pq+p=CD\vec{DE}=-\vec{p}-\vec{q}+\vec{p} = \vec{CD} rotated by 60
CD=BA+q=p+q\vec{CD} = \vec{BA}+\vec{q}=-\vec{p}+\vec{q}
DE=CA=AC=(p+q)=pq\vec{DE} = \vec{CA}=-\vec{AC} = -(\vec{p}+\vec{q})=-\vec{p}-\vec{q}
EF=DB=DA+AB=2q+p=p2q\vec{EF} = \vec{DB} = \vec{DA}+\vec{AB}= -2\vec{q} + \vec{p} = \vec{p}-2\vec{q}
FA=EC=2pp=DE=CD=2(qp)2p+q=3q2p\vec{FA} = \vec{EC} = -2\vec{p}-\vec{p} = -\vec{DE} = \vec{CD} = 2(\vec{q} - \vec{p}) - 2\vec{p}+\vec{q} = 3\vec{q} - 2\vec{p}
FA=pq\vec{FA}=\vec{p}-\vec{q}
AD=AC+CD=AB+BC+CD\vec{AD} = \vec{AC} + \vec{CD} = \vec{AB}+\vec{BC}+\vec{CD}
Since ABCDEFABCDEF is a regular hexagon, the distance from AA to DD is twice the length of BCBC. The direction of ADAD is the same as BCBC. Therefore, AD=2BC=2q\vec{AD} = 2\vec{BC} = 2\vec{q}.
EA=AE\vec{EA} = -\vec{AE}.
AE=AD+DE=2q+(pq)=qp\vec{AE} = \vec{AD} + \vec{DE}=2\vec{q}+(-\vec{p}-\vec{q})=\vec{q}-\vec{p}
EA=pq\vec{EA} = \vec{p}-\vec{q}
AC=AB+BC=p+q\vec{AC} = \vec{AB}+\vec{BC} = \vec{p}+\vec{q}
CD=p+q\vec{CD} = -\vec{p} + \vec{q}
DE=pq\vec{DE} = -\vec{p}-\vec{q}
EF=p\vec{EF} = -\vec{p}
FA=pq\vec{FA} = \vec{p}-\vec{q}
AD=2q\vec{AD} = 2\vec{q}
EA=pq\vec{EA} = \vec{p}-\vec{q}
AC=p+q\vec{AC} = \vec{p}+\vec{q}

3. Final Answer

CD=p+q\vec{CD} = -\vec{p}+\vec{q}
DE=pq\vec{DE} = -\vec{p}-\vec{q}
EF=p\vec{EF} = -\vec{p}
FA=qp\vec{FA} = \vec{q}-\vec{p}
AD=2q\vec{AD} = 2\vec{q}
EA=pq\vec{EA} = \vec{p}-\vec{q}
AC=p+q\vec{AC} = \vec{p}+\vec{q}

Related problems in "Geometry"

The problem asks to find the total area of a composite figure made up of two rectangles and a right ...

AreaComposite FiguresRectanglesTriangles
2025/4/23

The problem states that a triangle has angle measures of $(x+3)^\circ$, $(5x-8)^\circ$, and $(2x+1)^...

TriangleAngle Sum PropertyAlgebra
2025/4/23

We are given a diagram with a straight line and two lines intersecting it, forming angles. We are gi...

AnglesStraight LinesAngle Calculation
2025/4/22

The problem asks to find the size of angle $x$ in the given diagram. The angles $30^{\circ}$, $x$, a...

AnglesStraight LineAngle Calculation
2025/4/22

The problem asks to find the size of angle $x$ given a straight line with angles $20^{\circ}$, $x$, ...

AnglesStraight LineAngle Calculation
2025/4/22

The problem states that a line $l$ has a slope $m = -\frac{2}{3}$. We are asked to find the slope of...

LinesSlopePerpendicular Lines
2025/4/22

The problem asks for the size of angle $x$ given that the angles $30^\circ$, $x$, and $55^\circ$ for...

AnglesStraight LineAngle Sum
2025/4/22

We are asked to find the size of angle $x$ in the given diagram. We are given that the angles $30^{\...

AnglesStraight LinesAngle Calculation
2025/4/22

The problem asks us to find the size of angle $x$ in the given diagram. We are given that the angles...

AnglesStraight LineAngle SumGeometry
2025/4/22

We are given a pentagon ABCDE. We need to answer the following questions: a) Which two line segments...

PentagonParallel LinesLine SegmentsPerpendicular LinesGeometric Shapes
2025/4/22