Given a regular hexagon $ABCDEF$, where $\vec{AB} = \vec{p}$ and $\vec{BC} = \vec{q}$, express the vectors $\vec{CD}$, $\vec{DE}$, $\vec{EF}$, $\vec{FA}$, $\vec{AD}$, $\vec{EA}$, and $\vec{AC}$ in terms of $\vec{p}$ and $\vec{q}$.

GeometryVectorsGeometryHexagonVector Addition
2025/3/30

1. Problem Description

Given a regular hexagon ABCDEFABCDEF, where AB=p\vec{AB} = \vec{p} and BC=q\vec{BC} = \vec{q}, express the vectors CD\vec{CD}, DE\vec{DE}, EF\vec{EF}, FA\vec{FA}, AD\vec{AD}, EA\vec{EA}, and AC\vec{AC} in terms of p\vec{p} and q\vec{q}.

2. Solution Steps

In a regular hexagon, we know that all sides are equal in length, and all interior angles are 120 degrees. Also, opposite sides are parallel.
Since ABCDEFABCDEF is a regular hexagon:
AB=p\vec{AB} = \vec{p}
BC=q\vec{BC} = \vec{q}
CD\vec{CD}: Since AB+BC+CD+DE+EF+FA=0\vec{AB} + \vec{BC} + \vec{CD} + \vec{DE} + \vec{EF} + \vec{FA} = \vec{0} and AB\vec{AB} is parallel to ED\vec{ED} and equal in length, then ED=p\vec{ED} = -\vec{p}. Also BC\vec{BC} is parallel to FE\vec{FE} and equal in length, then FE=q\vec{FE} = -\vec{q}. We can see that CD=FEBA=pq\vec{CD} = \vec{FE} - \vec{BA} = \vec{p} - \vec{q}.
DE\vec{DE}: Because ABCDEFABCDEF is a regular hexagon, the sides are of equal length, and ABC=120\angle ABC = 120^\circ. Thus, BCD=120\angle BCD = 120^\circ. We also have CD=BCAB=qp\vec{CD} = \vec{BC} - \vec{AB} = \vec{q} - \vec{p}. Since ABDEAB || DE and the hexagon is regular, DE=AB=p\vec{DE} = -\vec{AB} = -\vec{p}.
EF\vec{EF}: EF=BC=q\vec{EF} = -\vec{BC} = -\vec{q}
FA\vec{FA}: FA=CD=(qp)=pq\vec{FA} = -\vec{CD} = -(\vec{q} - \vec{p}) = \vec{p} - \vec{q}
AD\vec{AD}: AD=AB+BC+CD=p+q+(qp)=2q=p+q+qp=2q\vec{AD} = \vec{AB} + \vec{BC} + \vec{CD} = \vec{p} + \vec{q} + (\vec{q} - \vec{p}) = 2\vec{q} = \vec{p}+\vec{q}+\vec{q}-\vec{p} = 2\vec{q}.
Or AD=2BC\vec{AD} = 2 \vec{BC} and BC=q\vec{BC} = \vec{q}.
Thus, AD=2q\vec{AD} = 2 \vec{q}
EA\vec{EA}: EA=DE=(p)=p\vec{EA} = -\vec{DE} = -(-\vec{p}) = \vec{p}. Also EA=BA+FA\vec{EA} = \vec{BA} + \vec{FA}. So FA=EABA=p(p)=EA\vec{FA} = \vec{EA} - \vec{BA} = \vec{p} - (-\vec{p}) = \vec{EA} then FA=CD=pq\vec{FA} = - \vec{CD} = \vec{p}-\vec{q} and AB=p-\vec{AB} = -\vec{p} then EA=AB=p(pq)=AC\vec{EA} = -\vec{AB} = \vec{p} -(\vec{p}-\vec{q}) = -\vec{AC}
EA=DE=qp\vec{EA} = -\vec{DE}=\vec{q}-\vec{p}. Therefore EA=AC\vec{EA} = -\vec{AC}. Since AC=p+q\vec{AC}=\vec{p} + \vec{q} EA=(AC)=(p+qp)\vec{EA} = - (\vec{AC}) = - (\vec{p} + \vec{q} - \vec{p}).
Since ABCDEF is a regular hexagon, then EA=CB+BA=qp\vec{EA} = \vec{CB} + \vec{BA} = -\vec{q} -\vec{p}. Therefore EA=pq\vec{EA} = -\vec{p}-\vec{q}
AC\vec{AC}: AC=AB+BC=p+q\vec{AC} = \vec{AB} + \vec{BC} = \vec{p} + \vec{q}.

3. Final Answer

CD=qp\vec{CD} = \vec{q} - \vec{p}
DE=p\vec{DE} = -\vec{p}
EF=q\vec{EF} = -\vec{q}
FA=pq\vec{FA} = \vec{p} - \vec{q}
AD=2q\vec{AD} = 2\vec{q}
EA=pq\vec{EA} = -\vec{p} - \vec{q}
AC=p+q\vec{AC} = \vec{p} + \vec{q}

Related problems in "Geometry"

The problem describes a piece of land consisting of a rectangle and a semi-circle. We need to find: ...

PerimeterAreaRectangleSemi-circleRatioTriangle
2025/4/9

The problem asks us to find the volume of a parallelepiped defined by three edge vectors. The edge v...

3D GeometryVectorsParallelepipedScalar Triple ProductDeterminantsVolume
2025/4/9

We need to find the equation of a plane that passes through the point $(-1, -2, 3)$ and is perpendic...

Plane EquationsVectorsCross Product3D Geometry
2025/4/9

We need to find the unit vectors perpendicular to the plane determined by the points $(1, 3, 5)$, $(...

Vectors3D GeometryCross ProductUnit VectorsPlanes
2025/4/9

Find all vectors that are perpendicular to both vectors $a = i + 2j + 3k$ and $b = -2i + 2j - 4k$.

VectorsCross ProductLinear Algebra3D GeometryPerpendicular Vectors
2025/4/9

Given vectors $a = (3, 3, 1)$, $b = (-2, -1, 0)$, and $c = (-2, -3, -1)$, we need to find the follow...

VectorsCross ProductDot ProductVector Algebra
2025/4/9

Given three vectors $a = (3, 3, 1)$, $b = (-2, -1, 0)$, and $c = (-2, -3, -1)$, we are asked to find...

VectorsCross ProductDot ProductVector Algebra
2025/4/9

We are given three vectors, $a = -3i + 2j - 2k$, $b = -i + 2j - 4k$, and $c = 7i + 3j - 4k$. We need...

VectorsCross ProductDot Product3D Geometry
2025/4/9

We are given a circle with points A, B, Q, and R on its circumference. PQ and RS are tangents to the...

Circle GeometryCyclic QuadrilateralTangentsAnglesAlternate Segment TheoremRectangle
2025/4/9

The problem asks for an example of an equation of a line with zero slope. A line with zero slope is ...

Linear EquationsSlopeHorizontal Lines
2025/4/9