Given a regular hexagon $ABCDEF$, where $\vec{AB} = \vec{p}$ and $\vec{BC} = \vec{q}$, express the vectors $\vec{CD}$, $\vec{DE}$, $\vec{EF}$, $\vec{FA}$, $\vec{AD}$, $\vec{EA}$, and $\vec{AC}$ in terms of $\vec{p}$ and $\vec{q}$.

GeometryVectorsGeometryHexagonVector Addition
2025/3/30

1. Problem Description

Given a regular hexagon ABCDEFABCDEF, where AB=p\vec{AB} = \vec{p} and BC=q\vec{BC} = \vec{q}, express the vectors CD\vec{CD}, DE\vec{DE}, EF\vec{EF}, FA\vec{FA}, AD\vec{AD}, EA\vec{EA}, and AC\vec{AC} in terms of p\vec{p} and q\vec{q}.

2. Solution Steps

In a regular hexagon, we know that all sides are equal in length, and all interior angles are 120 degrees. Also, opposite sides are parallel.
Since ABCDEFABCDEF is a regular hexagon:
AB=p\vec{AB} = \vec{p}
BC=q\vec{BC} = \vec{q}
CD\vec{CD}: Since AB+BC+CD+DE+EF+FA=0\vec{AB} + \vec{BC} + \vec{CD} + \vec{DE} + \vec{EF} + \vec{FA} = \vec{0} and AB\vec{AB} is parallel to ED\vec{ED} and equal in length, then ED=p\vec{ED} = -\vec{p}. Also BC\vec{BC} is parallel to FE\vec{FE} and equal in length, then FE=q\vec{FE} = -\vec{q}. We can see that CD=FEBA=pq\vec{CD} = \vec{FE} - \vec{BA} = \vec{p} - \vec{q}.
DE\vec{DE}: Because ABCDEFABCDEF is a regular hexagon, the sides are of equal length, and ABC=120\angle ABC = 120^\circ. Thus, BCD=120\angle BCD = 120^\circ. We also have CD=BCAB=qp\vec{CD} = \vec{BC} - \vec{AB} = \vec{q} - \vec{p}. Since ABDEAB || DE and the hexagon is regular, DE=AB=p\vec{DE} = -\vec{AB} = -\vec{p}.
EF\vec{EF}: EF=BC=q\vec{EF} = -\vec{BC} = -\vec{q}
FA\vec{FA}: FA=CD=(qp)=pq\vec{FA} = -\vec{CD} = -(\vec{q} - \vec{p}) = \vec{p} - \vec{q}
AD\vec{AD}: AD=AB+BC+CD=p+q+(qp)=2q=p+q+qp=2q\vec{AD} = \vec{AB} + \vec{BC} + \vec{CD} = \vec{p} + \vec{q} + (\vec{q} - \vec{p}) = 2\vec{q} = \vec{p}+\vec{q}+\vec{q}-\vec{p} = 2\vec{q}.
Or AD=2BC\vec{AD} = 2 \vec{BC} and BC=q\vec{BC} = \vec{q}.
Thus, AD=2q\vec{AD} = 2 \vec{q}
EA\vec{EA}: EA=DE=(p)=p\vec{EA} = -\vec{DE} = -(-\vec{p}) = \vec{p}. Also EA=BA+FA\vec{EA} = \vec{BA} + \vec{FA}. So FA=EABA=p(p)=EA\vec{FA} = \vec{EA} - \vec{BA} = \vec{p} - (-\vec{p}) = \vec{EA} then FA=CD=pq\vec{FA} = - \vec{CD} = \vec{p}-\vec{q} and AB=p-\vec{AB} = -\vec{p} then EA=AB=p(pq)=AC\vec{EA} = -\vec{AB} = \vec{p} -(\vec{p}-\vec{q}) = -\vec{AC}
EA=DE=qp\vec{EA} = -\vec{DE}=\vec{q}-\vec{p}. Therefore EA=AC\vec{EA} = -\vec{AC}. Since AC=p+q\vec{AC}=\vec{p} + \vec{q} EA=(AC)=(p+qp)\vec{EA} = - (\vec{AC}) = - (\vec{p} + \vec{q} - \vec{p}).
Since ABCDEF is a regular hexagon, then EA=CB+BA=qp\vec{EA} = \vec{CB} + \vec{BA} = -\vec{q} -\vec{p}. Therefore EA=pq\vec{EA} = -\vec{p}-\vec{q}
AC\vec{AC}: AC=AB+BC=p+q\vec{AC} = \vec{AB} + \vec{BC} = \vec{p} + \vec{q}.

3. Final Answer

CD=qp\vec{CD} = \vec{q} - \vec{p}
DE=p\vec{DE} = -\vec{p}
EF=q\vec{EF} = -\vec{q}
FA=pq\vec{FA} = \vec{p} - \vec{q}
AD=2q\vec{AD} = 2\vec{q}
EA=pq\vec{EA} = -\vec{p} - \vec{q}
AC=p+q\vec{AC} = \vec{p} + \vec{q}

Related problems in "Geometry"

The problem states that $Z$ is the centroid of triangle $TRS$. Given that $TO = 7b + 5$, $OR = 13b -...

CentroidTriangleMidpointAlgebraic EquationsLine Segments
2025/7/1

We are given that $m\angle ACT = 15a - 8$ and $m\angle ACB = 74$. Also, S is the incenter of $\trian...

Angle BisectorIncenterTriangleAnglesAlgebraic Manipulation
2025/7/1

$S$ is the circumcenter of triangle $ABC$. $CP = 7x - 1$ and $PB = 6x + 3$. Find the value of $x$ an...

GeometryTriangleCircumcenterMidpointAlgebraic Equations
2025/7/1

We are given a triangle $ABC$ and a point $S$ which is the circumcenter. $CP = 7x - 1$ and $PB = 6x ...

TriangleCircumcenterLine SegmentsAlgebraic Equations
2025/7/1

The problem provides the radius of a circle as $21.5$ cm and a central angle as $316$ degrees. We ne...

CircleArc LengthCircumferenceAngle Measurement
2025/7/1

The problem provides the radius of a circle, $r = 21.5$ cm, and the angle of a sector, $\theta = 316...

CircleSectorArc LengthRadiansAngle Conversion
2025/7/1

The problem asks us to locate the points D, F, E, and G on the graph based on their relative positio...

Coordinate GeometryPointsSpatial ReasoningVisual Estimation
2025/6/30

The image shows a coordinate grid with several points labeled A, B, C, P, Q, X, and Y. The task invo...

Coordinate GeometryCartesian PlanePointsCoordinates
2025/6/30

The problem asks to find the equation of a plane passing through the point $D(1,0,2)$. The expressio...

Planes3D GeometryVector AlgebraEquation of a Plane
2025/6/28

The problem asks to find the equation of a plane that passes through the point $D(1, 0, 2)$ and cont...

Planes3D GeometryEquation of a Planeyz-plane
2025/6/28