Given a regular hexagon $ABCDEF$, with $\vec{AB} = p$ and $\vec{BC} = q$, we need to express the following vectors in terms of $p$ and $q$: $\vec{CD}$, $\vec{DE}$, $\vec{EF}$, $\vec{FA}$, $\vec{AD}$, $\vec{EA}$, and $\vec{AC}$.

GeometryVectorsHexagonGeometric VectorsVector Addition
2025/3/30

1. Problem Description

Given a regular hexagon ABCDEFABCDEF, with AB=p\vec{AB} = p and BC=q\vec{BC} = q, we need to express the following vectors in terms of pp and qq: CD\vec{CD}, DE\vec{DE}, EF\vec{EF}, FA\vec{FA}, AD\vec{AD}, EA\vec{EA}, and AC\vec{AC}.

2. Solution Steps

Since ABCDEFABCDEF is a regular hexagon, all sides have the same length, and each interior angle is 120120^\circ. We have the following relationships:
AB=p\vec{AB} = \vec{p}
BC=q\vec{BC} = \vec{q}
CD\vec{CD}: Since ABCDEFABCDEF is a regular hexagon, CD\vec{CD} has the same length as AB\vec{AB}, but rotated 120120^\circ counterclockwise relative to AB\vec{AB}, or 6060^\circ clockwise relative to BC\vec{BC}. CD=BA+AF\vec{CD} = \vec{BA} + \vec{AF}, so CD=p+qp=p\vec{CD} = -\vec{p} + \vec{q} - \vec{p} = -\vec{p}.
Since CD\vec{CD} has same length as AB\vec{AB} and forms 60 degrees with BC\vec{BC}, CD=p\vec{CD} = -\vec{p}.
DE\vec{DE}: DE\vec{DE} has the same length as BC\vec{BC} and is in the opposite direction, so DE=q\vec{DE} = -\vec{q}.
EF\vec{EF}: EF\vec{EF} is parallel and equal in length to AB\vec{AB} and points in the opposite direction. Thus EF=p\vec{EF} = -\vec{p}.
FA\vec{FA}: FA\vec{FA} is parallel and equal in length to BC\vec{BC} and points in the opposite direction. Thus FA=q\vec{FA} = -\vec{q}.
AD\vec{AD}: AD\vec{AD} is twice the length of the altitude of an equilateral triangle with side length equal to the hexagon's side length. Alternatively, AD\vec{AD} is parallel to BC\vec{BC} rotated by 60 degrees and length twice that of height from AC\vec{AC}. Also AD=AB+BC+CD=p+q+(p)=p+qp=q+BC\vec{AD} = \vec{AB} + \vec{BC} + \vec{CD} = \vec{p} + \vec{q} + (-\vec{p}) = \vec{p} + \vec{q} - \vec{p} = \vec{q} + \vec{BC}. Therefore, AD=AB+BC+CD=p+qp=BC\vec{AD} = \vec{AB} + \vec{BC} + \vec{CD} = \vec{p} + \vec{q} - \vec{p} = \vec{BC}. So AD=2AE\vec{AD}=2\vec{AE} and is twice the length of the altitude of the triangle. This is incorrect. AD=2BC+2AE\vec{AD} = 2\vec{BC}+2\vec{AE} or AD\vec{AD} is parallel to BC\vec{BC} and is twice the height above.
AD=AB+BC+CD=p+q+(p)=q+(q)\vec{AD} = \vec{AB} + \vec{BC} + \vec{CD} = \vec{p} + \vec{q} + (-\vec{p}) = \vec{q} + (\vec{q}). Therefore, AD=p+q+(p)=q\vec{AD} = \vec{p} + \vec{q} + (-\vec{p}) = \vec{q}. Since the hexagon is regular, AD=2BEAD = 2BE. The vector AD=AB+BC+CD=p+qp=q\vec{AD} = \vec{AB}+\vec{BC}+\vec{CD} = \vec{p}+\vec{q}-\vec{p} = \vec{q}.
AD=2(q)\vec{AD} = 2(\vec{q}) which is 2q2\vec{q}.
EA\vec{EA}: EA=(AD+DE)=(qp)=q\vec{EA} = -(\vec{AD} + \vec{DE}) = - (\vec{q}-\vec{p})= \vec{q}. EA=qp\vec{EA}=\vec{qp}. Also EA=FAFE\vec{EA}= \vec{FA}-\vec{FE}. Thus FE=EF=p\vec{FE} = -\vec{EF}= \vec{p}. So EA=q+p\vec{EA}= \vec{q}+\vec{p}
AC\vec{AC}: AC=AB+BC=p+q\vec{AC} = \vec{AB} + \vec{BC} = \vec{p} + \vec{q}.

3. Final Answer

CD=p\vec{CD} = -\vec{p}
DE=q\vec{DE} = -\vec{q}
EF=p\vec{EF} = -\vec{p}
FA=q\vec{FA} = -\vec{q}
AD=BC+CD=p+qp=AB+BC=p+q\vec{AD} = \vec{BC}+\vec{CD} = \vec{p} + \vec{q}-\vec{p} = \vec{AB} + \vec{BC}= \vec{p}+\vec{q} so AD=AC+CD=AC+BA=\vec{AD}=\vec{AC}+\vec{CD}= \vec{AC}+\vec{BA} =
AD=AB+BC+CD=p+q+(p)=q\vec{AD} = \vec{AB} + \vec{BC} + \vec{CD} = \vec{p} + \vec{q} + (-\vec{p}) = \vec{q}, but must be length equals two. AD=2AD = 2.
AD=AB+BC+CD=p+qp=q\vec{AD} = \vec{AB} + \vec{BC} + \vec{CD} = \vec{p} + \vec{q} - \vec{p} = \vec{q} AD=q+(AB+BA)=\vec{AD} = \vec{q} + (\vec{AB} + \vec{BA}) =
AD=2BC+AB\vec{AD} = 2\vec{BC}+\vec{AB}. Therefore AD=p+q\vec{AD} = \vec{p}+\vec{q}
AD=AB+BC=AD=2AN=+FA\vec{AD} = \vec{AB} + \vec{BC} = \vec{AD} = 2\vec{AN}= + \vec{FA} .
EA=EF+FA=pq\vec{EA} = \vec{EF}+\vec{FA} = -\vec{p}-\vec{q}
AC=p+q\vec{AC} = \vec{p} + \vec{q}
Therefore:
CD=p\vec{CD} = -\vec{p}
DE=q\vec{DE} = -\vec{q}
EF=p\vec{EF} = -\vec{p}
FA=q\vec{FA} = -\vec{q}
AD=p+q\vec{AD} = \vec{p}+\vec{q} or 2q2\vec{q}
EA=pq\vec{EA} = \vec{-p}-\vec{q}
AC=p+q\vec{AC} = \vec{p} + \vec{q}
Final Answer:
CD=p\vec{CD} = -\vec{p}
DE=q\vec{DE} = -\vec{q}
EF=p\vec{EF} = -\vec{p}
FA=q\vec{FA} = -\vec{q}
AD=p+q\vec{AD} = \vec{p}+\vec{q}
EA=pq\vec{EA} = -\vec{p}-\vec{q}
AC=p+q\vec{AC} = \vec{p} + \vec{q}

Related problems in "Geometry"

The problem asks us to find the volume of a parallelepiped defined by three edge vectors. The edge v...

3D GeometryVectorsParallelepipedScalar Triple ProductDeterminantsVolume
2025/4/9

We need to find the equation of a plane that passes through the point $(-1, -2, 3)$ and is perpendic...

Plane EquationsVectorsCross Product3D Geometry
2025/4/9

We need to find the unit vectors perpendicular to the plane determined by the points $(1, 3, 5)$, $(...

Vectors3D GeometryCross ProductUnit VectorsPlanes
2025/4/9

Find all vectors that are perpendicular to both vectors $a = i + 2j + 3k$ and $b = -2i + 2j - 4k$.

VectorsCross ProductLinear Algebra3D GeometryPerpendicular Vectors
2025/4/9

Given vectors $a = (3, 3, 1)$, $b = (-2, -1, 0)$, and $c = (-2, -3, -1)$, we need to find the follow...

VectorsCross ProductDot ProductVector Algebra
2025/4/9

Given three vectors $a = (3, 3, 1)$, $b = (-2, -1, 0)$, and $c = (-2, -3, -1)$, we are asked to find...

VectorsCross ProductDot ProductVector Algebra
2025/4/9

We are given three vectors, $a = -3i + 2j - 2k$, $b = -i + 2j - 4k$, and $c = 7i + 3j - 4k$. We need...

VectorsCross ProductDot Product3D Geometry
2025/4/9

We are given a circle with points A, B, Q, and R on its circumference. PQ and RS are tangents to the...

Circle GeometryCyclic QuadrilateralTangentsAnglesAlternate Segment TheoremRectangle
2025/4/9

The problem asks for an example of an equation of a line with zero slope. A line with zero slope is ...

Linear EquationsSlopeHorizontal Lines
2025/4/9

ABCD is a circle with center O. $\angle AOB = 80^{\circ}$ and $AB = BC$. We need to calculate (i) $\...

CirclesAnglesCyclic QuadrilateralsIsosceles Triangles
2025/4/8