Given a regular hexagon $ABCDEF$, we are given that $\vec{AB} = p$ and $\vec{BC} = q$. We need to express the vectors $\vec{CD}$, $\vec{DE}$, $\vec{EF}$, $\vec{FA}$, $\vec{AD}$, $\vec{EA}$, and $\vec{AC}$ in terms of $p$ and $q$.

GeometryVectorsHexagonGeometric Vectors
2025/3/30

1. Problem Description

Given a regular hexagon ABCDEFABCDEF, we are given that AB=p\vec{AB} = p and BC=q\vec{BC} = q. We need to express the vectors CD\vec{CD}, DE\vec{DE}, EF\vec{EF}, FA\vec{FA}, AD\vec{AD}, EA\vec{EA}, and AC\vec{AC} in terms of pp and qq.

2. Solution Steps

Since ABCDEFABCDEF is a regular hexagon, all its sides have the same length, and all its interior angles are equal to 120120^{\circ}. Also, opposite sides are parallel.
(1) CD\vec{CD}: Since ABCDEFABCDEF is a regular hexagon, CD\vec{CD} is parallel to BA\vec{BA} and has the same length. Thus, CD=AB=p\vec{CD} = -\vec{AB} = -p.
(2) DE\vec{DE}: Since ABCDEFABCDEF is a regular hexagon, DE\vec{DE} is parallel to CB\vec{CB} and has the same length. Thus, DE=BC=q\vec{DE} = -\vec{BC} = -q.
(3) EF\vec{EF}: Since ABCDEFABCDEF is a regular hexagon, EF\vec{EF} is parallel to AB\vec{AB} and has the same length. Thus, EF=AB=p\vec{EF} = \vec{AB} = p.
(4) FA\vec{FA}: Since ABCDEFABCDEF is a regular hexagon, FA\vec{FA} is parallel to BC\vec{BC} and has the same length. Thus, FA=BC=q\vec{FA} = \vec{BC} = q.
(5) AD\vec{AD}: In a regular hexagon, AD=2BC+ABAB=AB+BC+CD+DE=p+qpq\vec{AD} = 2\vec{BC} + \vec{AB} - \vec{AB} = \vec{AB} + \vec{BC} + \vec{CD} + \vec{DE} = p + q - p - q. So AD=AB+BC+CD=AC+CD\vec{AD} = \vec{AB} + \vec{BC} + \vec{CD} = \vec{AC}+\vec{CD}.
We know that AC=AB+BC=p+q\vec{AC} = \vec{AB} + \vec{BC} = p + q. Also, the distance ADAD is twice the distance from the center to any vertex. Also, the angle between AB\vec{AB} and AD\vec{AD} is 6060^{\circ}, and the distance from AA to DD is twice the height of an equilateral triangle with side length equal to the hexagon's side length. Thus, AD=AB+BC+CD\vec{AD} = \vec{AB} + \vec{BC} + \vec{CD}.
Also we have AD=2(BCABcos120)=2BE\vec{AD} = 2(\vec{BC} - \vec{AB}\cos{120} ) = 2\vec{BE}. AD=2 times the distance from the center O to D\vec{AD} = 2 \text{ times the distance from the center } O \text{ to } D . Hence, AD=AB+BC+CD\vec{AD} = \vec{AB} + \vec{BC} + \vec{CD}. We have that CD=p\vec{CD} = -p from our work above.
AD=p+qp=q\vec{AD} = p + q -p = q. However, this is incorrect. We know AD\vec{AD} must have a magnitude of

2. We notice that the angle between $\vec{AB}$ and $\vec{BC}$ is $120^\circ$.

AD=AB+BC+CD+DE=p+qpq\vec{AD} = \vec{AB} + \vec{BC} + \vec{CD} + \vec{DE} = p + q - p - q . AD=2AO=2BE\vec{AD} = 2\vec{AO} = 2\vec{BE}. So, AO=AE\vec{AO} = \vec{AE}.
Consider the vector AD\vec{AD}. Note that the length of AD is twice the length of AB. The vector from A to the center O is equal to the vector from O to D. Let O be the center of the hexagon. Then AO=AB+BO\vec{AO} = \vec{AB} + \vec{BO}. Also, DO=AO\vec{DO} = -\vec{AO}. BO=BC+CO\vec{BO} = \vec{BC} + \vec{CO} where CO=AB\vec{CO} = \vec{AB}.
Thus, AO=AB+BC\vec{AO} = \vec{AB} + \vec{BC}. Thus, AD=2AO=2(AB+BC)=2(p+q)\vec{AD} = 2\vec{AO} = 2(\vec{AB} + \vec{BC}) = 2(p + q).
(6) EA\vec{EA}:
EA=(AE)=(AB+BE)=(AB+BC+CD)=(p+qp)=(q2pq)\vec{EA} = -(\vec{AE}) = -(\vec{AB} + \vec{BE}) = - (\vec{AB} + \vec{BC} + \vec{CD}) = - (p + q -p ) = - (q-2p-q)
EA=AE=(FAFE)\vec{EA} = - \vec{AE} = - (-\vec{FA}-\vec{FE}). EA=FA+EF\vec{EA} = \vec{FA} + \vec{EF}.
Since FA=q\vec{FA} = q and EF=p\vec{EF} = p, EA=q+p\vec{EA} = q+p. Also, EA=AE=DEAD\vec{EA} = -\vec{AE} = - \vec{DE} - \vec{AD}. We calculated AD=2(p+q)\vec{AD} = 2(p+q).
AE=EA=(2(p+q))-\vec{AE} = \vec{EA} = -(2(p+q)). DE=q\vec{DE}= -q, so -(-q)=q. EA=q+p=p+q\vec{EA} = \vec{q+p}=p+q.
However, since we also know that AO=OE=AB+BC=p+q\vec{AO}=\vec{OE} = \vec{AB} + \vec{BC} = p+q, EA=OE=q+p\vec{EA} = -\vec{OE} = q+p.
EA=CD\vec{EA} = \vec{CD}.
So we have EA=p+q\vec{EA} = p+q. Also DE=q\vec{DE} = -q, and AD=DA=AO+OD=2(p+q)\vec{AD} = -\vec{DA} = \vec{AO} + \vec{OD} = 2(p+q).
So, this means AD=AO+OD\vec{AD}=\vec{AO} + \vec{OD}.
So, the AA. FA=BC\vec{FA}=\vec{BC}.
(7) AC\vec{AC}:
AC=AB+BC=p+q\vec{AC} = \vec{AB} + \vec{BC} = p + q.

3. Final Answer

CD=p\vec{CD} = -p
DE=q\vec{DE} = -q
EF=p\vec{EF} = p
FA=q\vec{FA} = q
AD=2p+2q\vec{AD} = 2p + 2q
EA=p+q\vec{EA} = p + q
AC=p+q\vec{AC} = p + q

Related problems in "Geometry"

The problem consists of two parts: (a) A window is in the shape of a semi-circle with radius 70 cm. ...

CircleSemi-circlePerimeterBase ConversionNumber Systems
2025/6/11

The problem asks us to find the volume of a cylindrical litter bin in m³ to 2 decimal places (part a...

VolumeCylinderUnits ConversionProblem Solving
2025/6/10

We are given a triangle $ABC$ with $AB = 6$, $AC = 3$, and $\angle BAC = 120^\circ$. $AD$ is an angl...

TriangleAngle BisectorTrigonometryArea CalculationInradius
2025/6/10

The problem asks to find the values for I, JK, L, M, N, O, PQ, R, S, T, U, V, and W, based on the gi...

Triangle AreaInradiusGeometric Proofs
2025/6/10

In triangle $ABC$, $AB = 6$, $AC = 3$, and $\angle BAC = 120^{\circ}$. $D$ is the intersection of th...

TriangleLaw of CosinesAngle Bisector TheoremExternal Angle Bisector TheoremLength of SidesRatio
2025/6/10

A hunter on top of a tree sees an antelope at an angle of depression of $30^{\circ}$. The height of ...

TrigonometryRight TrianglesAngle of DepressionPythagorean Theorem
2025/6/10

A straight line passes through the points $(3, -2)$ and $(4, 5)$ and intersects the y-axis at $-23$....

Linear EquationsSlopeY-interceptCoordinate Geometry
2025/6/10

The problem states that the size of each interior angle of a regular polygon is $135^\circ$. We need...

PolygonsRegular PolygonsInterior AnglesExterior AnglesRotational Symmetry
2025/6/9

Y is 60 km away from X on a bearing of $135^{\circ}$. Z is 80 km away from X on a bearing of $225^{\...

TrigonometryBearingsCosine RuleRight Triangles
2025/6/8

The cross-section of a railway tunnel is shown. The length of the base $AB$ is 100 m, and the radius...

PerimeterArc LengthCircleRadius
2025/6/8