数列の和を求める問題です。 $\sum_{k=2}^{8} (k+1)(2k-1)$ を計算します。代数学数列シグマ級数計算2025/6/301. 問題の内容数列の和を求める問題です。∑k=28(k+1)(2k−1)\sum_{k=2}^{8} (k+1)(2k-1)∑k=28(k+1)(2k−1) を計算します。2. 解き方の手順まず、(k+1)(2k−1)(k+1)(2k-1)(k+1)(2k−1)を展開します。(k+1)(2k−1)=2k2−k+2k−1=2k2+k−1(k+1)(2k-1) = 2k^2 -k + 2k -1 = 2k^2 + k - 1(k+1)(2k−1)=2k2−k+2k−1=2k2+k−1次に、∑k=28(2k2+k−1)\sum_{k=2}^{8} (2k^2 + k - 1)∑k=28(2k2+k−1)を計算します。∑k=28(2k2+k−1)=2∑k=28k2+∑k=28k−∑k=281\sum_{k=2}^{8} (2k^2 + k - 1) = 2 \sum_{k=2}^{8} k^2 + \sum_{k=2}^{8} k - \sum_{k=2}^{8} 1∑k=28(2k2+k−1)=2∑k=28k2+∑k=28k−∑k=281∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1n1=n\sum_{k=1}^{n} 1 = n∑k=1n1=n∑k=28k=∑k=18k−1=8(8+1)2−1=8⋅92−1=36−1=35\sum_{k=2}^{8} k = \sum_{k=1}^{8} k - 1 = \frac{8(8+1)}{2} - 1 = \frac{8 \cdot 9}{2} - 1 = 36 - 1 = 35∑k=28k=∑k=18k−1=28(8+1)−1=28⋅9−1=36−1=35∑k=28k2=∑k=18k2−12=8(8+1)(2⋅8+1)6−1=8⋅9⋅176−1=12246−1=204−1=203\sum_{k=2}^{8} k^2 = \sum_{k=1}^{8} k^2 - 1^2 = \frac{8(8+1)(2 \cdot 8+1)}{6} - 1 = \frac{8 \cdot 9 \cdot 17}{6} - 1 = \frac{1224}{6} - 1 = 204 - 1 = 203∑k=28k2=∑k=18k2−12=68(8+1)(2⋅8+1)−1=68⋅9⋅17−1=61224−1=204−1=203∑k=281=8−2+1=7\sum_{k=2}^{8} 1 = 8 - 2 + 1 = 7∑k=281=8−2+1=72∑k=28k2+∑k=28k−∑k=281=2(203)+35−7=406+35−7=441−7=4342 \sum_{k=2}^{8} k^2 + \sum_{k=2}^{8} k - \sum_{k=2}^{8} 1 = 2(203) + 35 - 7 = 406 + 35 - 7 = 441 - 7 = 4342∑k=28k2+∑k=28k−∑k=281=2(203)+35−7=406+35−7=441−7=4343. 最終的な答え434