不定積分 $\int \sqrt{1+e^{2x}} \, dx$ を求める。解析学不定積分置換積分部分積分指数関数対数関数2025/6/301. 問題の内容不定積分 ∫1+e2x dx\int \sqrt{1+e^{2x}} \, dx∫1+e2xdx を求める。2. 解き方の手順まず、ex=te^x = tex=t と置換すると、x=logtx = \log tx=logt より、dx=1tdtdx = \frac{1}{t} dtdx=t1dt となる。したがって、∫1+e2x dx=∫1+t2 1tdt=∫1+t2tdt\int \sqrt{1+e^{2x}} \, dx = \int \sqrt{1+t^2} \, \frac{1}{t} dt = \int \frac{\sqrt{1+t^2}}{t} dt∫1+e2xdx=∫1+t2t1dt=∫t1+t2dtここで、u=1+t2u = \sqrt{1+t^2}u=1+t2 と置換すると、u2=1+t2u^2 = 1+t^2u2=1+t2 より、t2=u2−1t^2 = u^2 - 1t2=u2−1 となり、t=u2−1t = \sqrt{u^2-1}t=u2−1。また、2udu=2tdt2u du = 2t dt2udu=2tdt より、dt=utdu=uu2−1dudt = \frac{u}{t} du = \frac{u}{\sqrt{u^2-1}} dudt=tudu=u2−1udu となる。したがって、∫1+t2tdt=∫uu2−1uu2−1du=∫u2u2−1du=∫u2−1+1u2−1du=∫(1+1u2−1)du\int \frac{\sqrt{1+t^2}}{t} dt = \int \frac{u}{\sqrt{u^2-1}} \frac{u}{\sqrt{u^2-1}} du = \int \frac{u^2}{u^2-1} du = \int \frac{u^2-1+1}{u^2-1} du = \int \left(1 + \frac{1}{u^2-1}\right) du∫t1+t2dt=∫u2−1uu2−1udu=∫u2−1u2du=∫u2−1u2−1+1du=∫(1+u2−11)du1u2−1=1(u−1)(u+1)=12(1u−1−1u+1)\frac{1}{u^2-1} = \frac{1}{(u-1)(u+1)} = \frac{1}{2}\left(\frac{1}{u-1} - \frac{1}{u+1}\right)u2−11=(u−1)(u+1)1=21(u−11−u+11) より、∫(1+1u2−1)du=∫(1+12(1u−1−1u+1))du=u+12log∣u−1∣−12log∣u+1∣+C=u+12log∣u−1u+1∣+C\int \left(1 + \frac{1}{u^2-1}\right) du = \int \left(1 + \frac{1}{2}\left(\frac{1}{u-1} - \frac{1}{u+1}\right)\right) du = u + \frac{1}{2}\log|u-1| - \frac{1}{2}\log|u+1| + C = u + \frac{1}{2}\log\left|\frac{u-1}{u+1}\right| + C∫(1+u2−11)du=∫(1+21(u−11−u+11))du=u+21log∣u−1∣−21log∣u+1∣+C=u+21logu+1u−1+Cここで、u=1+t2u = \sqrt{1+t^2}u=1+t2 より、1+t2+12log∣1+t2−11+t2+1∣+C\sqrt{1+t^2} + \frac{1}{2}\log\left|\frac{\sqrt{1+t^2}-1}{\sqrt{1+t^2}+1}\right| + C1+t2+21log1+t2+11+t2−1+Cさらに、t=ext=e^xt=ex より、1+e2x+12log∣1+e2x−11+e2x+1∣+C\sqrt{1+e^{2x}} + \frac{1}{2}\log\left|\frac{\sqrt{1+e^{2x}}-1}{\sqrt{1+e^{2x}}+1}\right| + C1+e2x+21log1+e2x+11+e2x−1+C1+e2x−11+e2x+1=(1+e2x−1)21+e2x−1=1+e2x−21+e2x+1e2x=2+e2x−21+e2xe2x\frac{\sqrt{1+e^{2x}}-1}{\sqrt{1+e^{2x}}+1} = \frac{(\sqrt{1+e^{2x}}-1)^2}{1+e^{2x}-1} = \frac{1+e^{2x}-2\sqrt{1+e^{2x}}+1}{e^{2x}} = \frac{2+e^{2x}-2\sqrt{1+e^{2x}}}{e^{2x}}1+e2x+11+e2x−1=1+e2x−1(1+e2x−1)2=e2x1+e2x−21+e2x+1=e2x2+e2x−21+e2xlog∣1+e2x−11+e2x+1∣=log∣(1+e2x−1)2e2x∣=2log∣1+e2x−1∣−2x\log\left|\frac{\sqrt{1+e^{2x}}-1}{\sqrt{1+e^{2x}}+1}\right| = \log\left|\frac{(\sqrt{1+e^{2x}}-1)^2}{e^{2x}}\right| = 2\log\left|\sqrt{1+e^{2x}}-1\right| - 2xlog1+e2x+11+e2x−1=loge2x(1+e2x−1)2=2log1+e2x−1−2x1+e2x+12(2log∣1+e2x−1∣−2x)+C=1+e2x+log∣1+e2x−1∣−x+C\sqrt{1+e^{2x}} + \frac{1}{2}\left(2\log\left|\sqrt{1+e^{2x}}-1\right| - 2x\right) + C = \sqrt{1+e^{2x}} + \log\left|\sqrt{1+e^{2x}}-1\right| - x + C1+e2x+21(2log1+e2x−1−2x)+C=1+e2x+log1+e2x−1−x+C別の解法として、部分積分を用いる。∫1+e2xdx=∫1⋅1+e2xdx=x1+e2x−∫xe2x1+e2xdx\int \sqrt{1+e^{2x}} dx = \int 1 \cdot \sqrt{1+e^{2x}} dx = x\sqrt{1+e^{2x}} - \int x \frac{e^{2x}}{\sqrt{1+e^{2x}}} dx∫1+e2xdx=∫1⋅1+e2xdx=x1+e2x−∫x1+e2xe2xdxt=ext = e^xt=exより x=logtx = \log tx=logt となり dx=1tdtdx = \frac{1}{t}dtdx=t1dt∫1+t2tdt\int \frac{\sqrt{1+t^2}}{t}dt∫t1+t2dt で置換積分を使う。1+t2=u21+t^2 = u^21+t2=u2 とすると、t2=u2−1t^2 = u^2 - 1t2=u2−1 より t=u2−1t=\sqrt{u^2-1}t=u2−12tdt=2udu2t dt = 2u du2tdt=2udu より dt=utdu=uu2−1dudt = \frac{u}{t}du = \frac{u}{\sqrt{u^2-1}} dudt=tudu=u2−1udu∫uu2−1⋅uu2−1du=∫u2u2−1du=∫(1+1u2−1)du=u+12log∣u−1u+1∣+C\int \frac{u}{\sqrt{u^2-1}} \cdot \frac{u}{\sqrt{u^2-1}} du = \int \frac{u^2}{u^2-1} du = \int (1 + \frac{1}{u^2-1})du = u + \frac{1}{2}\log\left|\frac{u-1}{u+1}\right| + C∫u2−1u⋅u2−1udu=∫u2−1u2du=∫(1+u2−11)du=u+21logu+1u−1+C=1+t2+12log∣1+t2−11+t2+1∣+C=1+e2x+12log∣1+e2x−11+e2x+1∣+C= \sqrt{1+t^2} + \frac{1}{2}\log\left|\frac{\sqrt{1+t^2}-1}{\sqrt{1+t^2}+1}\right| + C = \sqrt{1+e^{2x}} + \frac{1}{2}\log\left|\frac{\sqrt{1+e^{2x}}-1}{\sqrt{1+e^{2x}}+1}\right| + C=1+t2+21log1+t2+11+t2−1+C=1+e2x+21log1+e2x+11+e2x−1+C=1+e2x+log(1+e2x−1)−x+C= \sqrt{1+e^{2x}} + \log(\sqrt{1+e^{2x}} - 1) - x + C=1+e2x+log(1+e2x−1)−x+C3. 最終的な答え1+e2x+log(1+e2x−1)−x+C\sqrt{1+e^{2x}} + \log(\sqrt{1+e^{2x}} - 1) - x + C1+e2x+log(1+e2x−1)−x+C