The problem asks us to solve for $x$ or $y$ in the given equations. The equations are: (i) $2^{2x} - 5(2^x) + 4 = 0$ (ii) $2^{2y+1} - 15(2^y) = 8$ (iv) $2^{3x+1} - 3(2^{2x}) + 2^{x+1} = 2^x$ (v) $3^{2x} - 3^{x+2} = 3^{1+x} - 27$

AlgebraExponential EquationsSolving EquationsSubstitutionQuadratic EquationsExponents
2025/3/10

1. Problem Description

The problem asks us to solve for xx or yy in the given equations. The equations are:
(i) 22x5(2x)+4=02^{2x} - 5(2^x) + 4 = 0
(ii) 22y+115(2y)=82^{2y+1} - 15(2^y) = 8
(iv) 23x+13(22x)+2x+1=2x2^{3x+1} - 3(2^{2x}) + 2^{x+1} = 2^x
(v) 32x3x+2=31+x273^{2x} - 3^{x+2} = 3^{1+x} - 27

2. Solution Steps

(i) 22x5(2x)+4=02^{2x} - 5(2^x) + 4 = 0
Let u=2xu = 2^x. Then the equation becomes:
u25u+4=0u^2 - 5u + 4 = 0
(u4)(u1)=0(u - 4)(u - 1) = 0
u=4u = 4 or u=1u = 1
2x=4=222^x = 4 = 2^2 or 2x=1=202^x = 1 = 2^0
x=2x = 2 or x=0x = 0
(ii) 22y+115(2y)=82^{2y+1} - 15(2^y) = 8
22y2115(2y)=82^{2y} \cdot 2^1 - 15(2^y) = 8
2(2y)215(2y)8=02(2^y)^2 - 15(2^y) - 8 = 0
Let v=2yv = 2^y. Then the equation becomes:
2v215v8=02v^2 - 15v - 8 = 0
2v216v+v8=02v^2 - 16v + v - 8 = 0
2v(v8)+1(v8)=02v(v - 8) + 1(v - 8) = 0
(2v+1)(v8)=0(2v + 1)(v - 8) = 0
v=8v = 8 or v=12v = -\frac{1}{2}
Since v=2yv = 2^y, 2y=8=232^y = 8 = 2^3 or 2y=122^y = -\frac{1}{2}. 2y2^y can never be negative, so we only have
y=3y = 3
(iv) 23x+13(22x)+2x+1=2x2^{3x+1} - 3(2^{2x}) + 2^{x+1} = 2^x
23x213(22x)+2x21=2x2^{3x} \cdot 2^1 - 3(2^{2x}) + 2^x \cdot 2^1 = 2^x
2(2x)33(2x)2+2(2x)=2x2(2^x)^3 - 3(2^x)^2 + 2(2^x) = 2^x
2(2x)33(2x)2+2(2x)2x=02(2^x)^3 - 3(2^x)^2 + 2(2^x) - 2^x = 0
2(2x)33(2x)2+(2x)=02(2^x)^3 - 3(2^x)^2 + (2^x) = 0
2x[2(2x)23(2x)+1]=02^x[2(2^x)^2 - 3(2^x) + 1] = 0
Since 2x2^x is never zero, we have
2(2x)23(2x)+1=02(2^x)^2 - 3(2^x) + 1 = 0
Let w=2xw = 2^x.
2w23w+1=02w^2 - 3w + 1 = 0
2w22ww+1=02w^2 - 2w - w + 1 = 0
2w(w1)(w1)=02w(w-1) - (w-1) = 0
(2w1)(w1)=0(2w-1)(w-1) = 0
w=1w = 1 or w=12w = \frac{1}{2}
2x=1=202^x = 1 = 2^0 or 2x=12=212^x = \frac{1}{2} = 2^{-1}
x=0x = 0 or x=1x = -1
(v) 32x3x+2=31+x273^{2x} - 3^{x+2} = 3^{1+x} - 27
32x3x32=33x273^{2x} - 3^x \cdot 3^2 = 3 \cdot 3^x - 27
(3x)29(3x)=3(3x)27(3^x)^2 - 9(3^x) = 3(3^x) - 27
(3x)212(3x)+27=0(3^x)^2 - 12(3^x) + 27 = 0
Let z=3xz = 3^x
z212z+27=0z^2 - 12z + 27 = 0
z29z3z+27=0z^2 - 9z - 3z + 27 = 0
z(z9)3(z9)=0z(z-9) - 3(z-9) = 0
(z3)(z9)=0(z-3)(z-9) = 0
z=3z = 3 or z=9z = 9
3x=3=313^x = 3 = 3^1 or 3x=9=323^x = 9 = 3^2
x=1x = 1 or x=2x = 2

3. Final Answer

(i) x=0,2x = 0, 2
(ii) y=3y = 3
(iv) x=1,0x = -1, 0
(v) x=1,2x = 1, 2

Related problems in "Algebra"

The problem is about an affine function $g$ such that $g(0) = 3$ and $g(2) = 7$. We are asked to: 1....

Linear FunctionsFunction EvaluationLinear EquationsGraphing
2025/4/25

We are given a function $f$ and its graph $(D)$. We need to determine the nature of the function $f$...

Linear FunctionsAffine FunctionsGraphsSlopeFunction EvaluationSystems of Equations
2025/4/25

The problem is to solve the following equation for $x$: $\frac{2x+3}{2} = \frac{2x-3}{2x} + x$

Equation SolvingLinear EquationsFractionsVariable IsolationSolution Verification
2025/4/25

The problem consists of two exercises. Exercise 2 deals with a linear function $f$ such that $f(7) =...

Linear FunctionsAffine FunctionsFunctionsGraphing
2025/4/25

The problem states that $g$ is an affine function such that $g(0) = 3$ and $g(2) = 7$. We need to: (...

Linear FunctionsAffine FunctionsFunction EvaluationEquation SolvingCoordinate Geometry
2025/4/25

We are given a linear function $f$ such that $f(7) = 14$. We need to: 1. Determine the expression of...

Linear FunctionsFunction EvaluationGraphing
2025/4/25

The problem describes a linear function $f$ such that $f(7) = 14$. The tasks are: (a) Determine the ...

Linear FunctionsFunctionsGraphing
2025/4/25

We are given two exercises. Exercise 2: $f$ is a linear function such that $f(7) = 14$. We need to: ...

Linear FunctionsAffine FunctionsFunction EvaluationGraphing
2025/4/25

The problem is divided into three exercises. Exercise 1 involves points in an orthonormal coordinate...

Linear EquationsCoordinate GeometryFunctionsAffine FunctionsVector AlgebraDistance FormulaMidpoint FormulaEquation of a LineParallel LinesPerpendicular Lines
2025/4/25

The image contains two exercises. Exercise 2 involves a linear function $f$ such that $f(7) = 14$. ...

Linear FunctionsAffine FunctionsFunction EvaluationGraphing
2025/4/25