一次関数 $y = 3x - 7$ において、$x$ の値が 8 増加すると、$y$ の値はいくら増加するかを求める問題です。

代数学一次関数変化の割合傾き
2025/7/6

1. 問題の内容

一次関数 y=3x7y = 3x - 7 において、xx の値が 8 増加すると、yy の値はいくら増加するかを求める問題です。

2. 解き方の手順

一次関数 y=ax+by = ax + b において、aa は傾き(変化の割合)を表します。
傾きは、xx が 1 増加したときに yy がどれだけ増加するかを示します。
この問題では、y=3x7y = 3x - 7 なので、傾きは 3 です。
したがって、xx が 1 増加すると、yy は 3 増加します。
xx が 8 増加する場合、yy の増加量は 3×83 \times 8 で計算できます。
3×8=243 \times 8 = 24

3. 最終的な答え

24

「代数学」の関連問題

与えられた二次関数 $y = -2x^2 + 3x - 1$ の最大値を求め、そのときの $x$ の値を求める。

二次関数最大値平方完成頂点
2025/7/6

点 $(x, y)$ が連立不等式 $3x - y \ge 0$, $x - 2y \le 0$, $x + 3y - 10 \le 0$ を満たすとき、$-x + y$ の最大値と最小値を求めよ。

線形計画法不等式最大値最小値領域
2025/7/6

行列 $A = \begin{bmatrix} t+1 & 1 \\ 1 & t+1 \end{bmatrix}$ (ただし $t$ は実数) とする。連立一次方程式 $Ax = \begin{bma...

線形代数行列連立一次方程式行列式解の存在条件
2025/7/6

2次関数 $y = 3x^2$ のグラフを指定された方法で平行移動した放物線をグラフとする2次関数を $y = a(x - p)^2 + q$ の形で求めます。

二次関数平行移動グラフ放物線
2025/7/6

行列 $A = \begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix}$ による線形写像 $y = Ax$ によって、与えられた不等式で表される領域がどのような領域に...

線形写像行列領域変換線形代数
2025/7/6

与えられた行列 $A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}$ による線形写像 $y = Ax$ によって、次の不等式で表される領域がどのような領...

線形代数線形写像行列領域
2025/7/6

与えられた行列 $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$ による線形写像 $y = Ax$ によって、以下の不等式で表される領域がどのような...

線形代数線形写像行列領域変換
2025/7/6

与えられた条件を満たすように、定数 $c$ の値を求める問題です。 (1) 関数 $y = x^2 - 12x + c$ ($3 \le x \le 8$) の最大値が $10$ である。 (2) 関...

二次関数最大値最小値平方完成
2025/7/6

与えられた行列 $A = \begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix}$ による線形写像 $y = Ax$ によって、以下の領域がどのような領域に移るかを求...

線形写像行列線形代数領域変換
2025/7/6

関数 $y = ax + b$ ($-1 \le x \le 1$)の値域が $-3 \le y \le 1$ となるような定数 $a$, $b$ の値を求める問題です。ただし、$a < 0$ としま...

一次関数連立方程式値域
2025/7/6