$x = \frac{\sqrt{3}-1}{\sqrt{7}+\sqrt{5}}$、$y = \frac{\sqrt{3}+1}{\sqrt{7}-\sqrt{5}}$ のとき、$\frac{y-x}{xy}$ の値を求める問題です。代数学式の計算有理化平方根2025/7/61. 問題の内容x=3−17+5x = \frac{\sqrt{3}-1}{\sqrt{7}+\sqrt{5}}x=7+53−1、y=3+17−5y = \frac{\sqrt{3}+1}{\sqrt{7}-\sqrt{5}}y=7−53+1 のとき、y−xxy\frac{y-x}{xy}xyy−x の値を求める問題です。2. 解き方の手順まず、xxxとyyyの分母を有理化します。x=3−17+5=(3−1)(7−5)(7+5)(7−5)=(3−1)(7−5)7−5=(3−1)(7−5)2x = \frac{\sqrt{3}-1}{\sqrt{7}+\sqrt{5}} = \frac{(\sqrt{3}-1)(\sqrt{7}-\sqrt{5})}{(\sqrt{7}+\sqrt{5})(\sqrt{7}-\sqrt{5})} = \frac{(\sqrt{3}-1)(\sqrt{7}-\sqrt{5})}{7-5} = \frac{(\sqrt{3}-1)(\sqrt{7}-\sqrt{5})}{2}x=7+53−1=(7+5)(7−5)(3−1)(7−5)=7−5(3−1)(7−5)=2(3−1)(7−5)y=3+17−5=(3+1)(7+5)(7−5)(7+5)=(3+1)(7+5)7−5=(3+1)(7+5)2y = \frac{\sqrt{3}+1}{\sqrt{7}-\sqrt{5}} = \frac{(\sqrt{3}+1)(\sqrt{7}+\sqrt{5})}{(\sqrt{7}-\sqrt{5})(\sqrt{7}+\sqrt{5})} = \frac{(\sqrt{3}+1)(\sqrt{7}+\sqrt{5})}{7-5} = \frac{(\sqrt{3}+1)(\sqrt{7}+\sqrt{5})}{2}y=7−53+1=(7−5)(7+5)(3+1)(7+5)=7−5(3+1)(7+5)=2(3+1)(7+5)次に、y−xy-xy−xを計算します。y−x=(3+1)(7+5)2−(3−1)(7−5)2=(3+1)(7+5)−(3−1)(7−5)2y-x = \frac{(\sqrt{3}+1)(\sqrt{7}+\sqrt{5})}{2} - \frac{(\sqrt{3}-1)(\sqrt{7}-\sqrt{5})}{2} = \frac{(\sqrt{3}+1)(\sqrt{7}+\sqrt{5}) - (\sqrt{3}-1)(\sqrt{7}-\sqrt{5})}{2}y−x=2(3+1)(7+5)−2(3−1)(7−5)=2(3+1)(7+5)−(3−1)(7−5)=(21+15+7+5)−(21−15−7+5)2=21+15+7+5−21+15+7−52= \frac{(\sqrt{21}+\sqrt{15}+\sqrt{7}+\sqrt{5}) - (\sqrt{21}-\sqrt{15}-\sqrt{7}+\sqrt{5})}{2} = \frac{\sqrt{21}+\sqrt{15}+\sqrt{7}+\sqrt{5} - \sqrt{21}+\sqrt{15}+\sqrt{7}-\sqrt{5}}{2}=2(21+15+7+5)−(21−15−7+5)=221+15+7+5−21+15+7−5=215+272=15+7= \frac{2\sqrt{15}+2\sqrt{7}}{2} = \sqrt{15}+\sqrt{7}=2215+27=15+7次に、xyxyxyを計算します。xy=3−17+5⋅3+17−5=(3−1)(3+1)(7+5)(7−5)=3−17−5=22=1xy = \frac{\sqrt{3}-1}{\sqrt{7}+\sqrt{5}} \cdot \frac{\sqrt{3}+1}{\sqrt{7}-\sqrt{5}} = \frac{(\sqrt{3}-1)(\sqrt{3}+1)}{(\sqrt{7}+\sqrt{5})(\sqrt{7}-\sqrt{5})} = \frac{3-1}{7-5} = \frac{2}{2} = 1xy=7+53−1⋅7−53+1=(7+5)(7−5)(3−1)(3+1)=7−53−1=22=1最後に、y−xxy\frac{y-x}{xy}xyy−xを計算します。y−xxy=15+71=7+15\frac{y-x}{xy} = \frac{\sqrt{15}+\sqrt{7}}{1} = \sqrt{7}+\sqrt{15}xyy−x=115+7=7+153. 最終的な答え7+15\sqrt{7}+\sqrt{15}7+15したがって、答えは1です。