We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

AnalysisIntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

1. Problem Description

We are asked to solve the integral 11008x2dx\int \frac{1}{\sqrt{100-8x^2}} dx.

2. Solution Steps

First, we can factor out 100 from the square root to get:
1100(18x2100)dx=11018x2100dx=110118x2100dx\int \frac{1}{\sqrt{100(1-\frac{8x^2}{100})}} dx = \int \frac{1}{10\sqrt{1-\frac{8x^2}{100}}} dx = \frac{1}{10} \int \frac{1}{\sqrt{1-\frac{8x^2}{100}}} dx
Now let u=8x10u = \frac{\sqrt{8}x}{10}. Then du=810dxdu = \frac{\sqrt{8}}{10} dx, so dx=108dudx = \frac{10}{\sqrt{8}} du.
Substitute these into the integral:
11011u2108du=11010811u2du=1811u2du\frac{1}{10} \int \frac{1}{\sqrt{1-u^2}} \cdot \frac{10}{\sqrt{8}} du = \frac{1}{10} \cdot \frac{10}{\sqrt{8}} \int \frac{1}{\sqrt{1-u^2}} du = \frac{1}{\sqrt{8}} \int \frac{1}{\sqrt{1-u^2}} du
We know that 11u2du=arcsin(u)+C=sin1(u)+C\int \frac{1}{\sqrt{1-u^2}} du = \arcsin(u) + C = \sin^{-1}(u) + C.
Therefore,
1811u2du=18sin1(u)+C=18sin1(8x10)+C\frac{1}{\sqrt{8}} \int \frac{1}{\sqrt{1-u^2}} du = \frac{1}{\sqrt{8}} \sin^{-1}(u) + C = \frac{1}{\sqrt{8}} \sin^{-1}(\frac{\sqrt{8}x}{10}) + C.

3. Final Answer

The final answer is A. 18sin1(8x10)+C\frac{1}{\sqrt{8}} \sin^{-1}(\frac{\sqrt{8}x}{10}) + C.

Related problems in "Analysis"

We are asked to evaluate the triple integral $I = \int_0^{\log_e 2} \int_0^x \int_0^{x+\log_e y} e^{...

Multiple IntegralsIntegration by PartsCalculus
2025/6/4

The problem asks us to evaluate the following limit: $ \lim_{x\to\frac{\pi}{3}} \frac{\sqrt{3}(\frac...

LimitsTrigonometryCalculus
2025/6/4

We need to evaluate the limit of the expression $(x + \sqrt{x^2 - 9})$ as $x$ approaches negative in...

LimitsCalculusFunctionsConjugateInfinity
2025/6/4

The problem asks to prove that $\int_0^1 \ln(\frac{\varphi - x^2}{\varphi + x^2}) \frac{dx}{x\sqrt{1...

Definite IntegralsCalculusIntegration TechniquesTrigonometric SubstitutionImproper Integrals
2025/6/4

The problem defines a harmonic function as a function of two variables that satisfies Laplace's equa...

Partial DerivativesLaplace's EquationHarmonic FunctionMultivariable Calculus
2025/6/4

The problem asks us to find all first partial derivatives of the given functions. We will solve pro...

Partial DerivativesMultivariable CalculusDifferentiation
2025/6/4

We are asked to find the first partial derivatives of the given functions. 3. $f(x, y) = \frac{x^2 -...

Partial DerivativesMultivariable CalculusDifferentiation
2025/6/4

The problem asks us to find all first partial derivatives of each function given. Let's solve proble...

Partial DerivativesChain RuleMultivariable Calculus
2025/6/4

The problem is to evaluate the indefinite integral of $x^n$ with respect to $x$, i.e., $\int x^n \, ...

IntegrationIndefinite IntegralPower Rule
2025/6/4

We need to find the limit of the function $x + \sqrt{x^2 + 9}$ as $x$ approaches negative infinity. ...

LimitsFunctionsCalculusInfinite LimitsConjugate
2025/6/2