First, we can factor out 100 from the square root to get:
∫100(1−1008x2)1dx=∫101−1008x21dx=101∫1−1008x21dx Now let u=108x. Then du=108dx, so dx=810du. Substitute these into the integral:
101∫1−u21⋅810du=101⋅810∫1−u21du=81∫1−u21du We know that ∫1−u21du=arcsin(u)+C=sin−1(u)+C. Therefore,
81∫1−u21du=81sin−1(u)+C=81sin−1(108x)+C.