We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

AnalysisIntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

1. Problem Description

We are asked to solve the integral 11008x2dx\int \frac{1}{\sqrt{100-8x^2}} dx.

2. Solution Steps

First, we can factor out 100 from the square root to get:
1100(18x2100)dx=11018x2100dx=110118x2100dx\int \frac{1}{\sqrt{100(1-\frac{8x^2}{100})}} dx = \int \frac{1}{10\sqrt{1-\frac{8x^2}{100}}} dx = \frac{1}{10} \int \frac{1}{\sqrt{1-\frac{8x^2}{100}}} dx
Now let u=8x10u = \frac{\sqrt{8}x}{10}. Then du=810dxdu = \frac{\sqrt{8}}{10} dx, so dx=108dudx = \frac{10}{\sqrt{8}} du.
Substitute these into the integral:
11011u2108du=11010811u2du=1811u2du\frac{1}{10} \int \frac{1}{\sqrt{1-u^2}} \cdot \frac{10}{\sqrt{8}} du = \frac{1}{10} \cdot \frac{10}{\sqrt{8}} \int \frac{1}{\sqrt{1-u^2}} du = \frac{1}{\sqrt{8}} \int \frac{1}{\sqrt{1-u^2}} du
We know that 11u2du=arcsin(u)+C=sin1(u)+C\int \frac{1}{\sqrt{1-u^2}} du = \arcsin(u) + C = \sin^{-1}(u) + C.
Therefore,
1811u2du=18sin1(u)+C=18sin1(8x10)+C\frac{1}{\sqrt{8}} \int \frac{1}{\sqrt{1-u^2}} du = \frac{1}{\sqrt{8}} \sin^{-1}(u) + C = \frac{1}{\sqrt{8}} \sin^{-1}(\frac{\sqrt{8}x}{10}) + C.

3. Final Answer

The final answer is A. 18sin1(8x10)+C\frac{1}{\sqrt{8}} \sin^{-1}(\frac{\sqrt{8}x}{10}) + C.

Related problems in "Analysis"

We are asked to evaluate the limit of a vector-valued function as $t$ approaches 0. The vector-value...

LimitsVector CalculusMultivariable CalculusLimits of Vector-Valued Functions
2025/4/11

We are given a function $f(x)$ defined as a determinant: $f(x) = \begin{vmatrix} \sin x & \cos x & \...

DeterminantsDerivativesTrigonometryCalculus
2025/4/10

The problem consists of several exercises. Exercise 5 asks us to consider two functions, $f(x) = 2\c...

TrigonometryTrigonometric IdentitiesFunctions
2025/4/10

We are asked to evaluate the following integral: $\int_0^{+\infty} \frac{dx}{(1+x)(\pi^2 + \ln^2 x)}...

Definite IntegralIntegration TechniquesSubstitutionCalculus
2025/4/7

We need to find the average rate of change of the function $f(x) = \frac{x-5}{x+3}$ from $x = -2$ to...

Average Rate of ChangeFunctionsCalculus
2025/4/5

If a function $f(x)$ has a maximum at the point $(2, 4)$, what does the reciprocal of $f(x)$, which ...

CalculusFunction AnalysisMaxima and MinimaReciprocal Function
2025/4/5

We are given the function $f(x) = x^2 + 1$ and we want to determine the interval(s) in which its rec...

CalculusDerivativesFunction AnalysisIncreasing Functions
2025/4/5

We are given the function $f(x) = -2x + 3$. We want to find where the reciprocal function, $g(x) = \...

CalculusDerivativesIncreasing FunctionsReciprocal FunctionsAsymptotes
2025/4/5

We need to find the horizontal asymptote of the function $f(x) = \frac{2x - 7}{5x + 3}$.

LimitsAsymptotesRational Functions
2025/4/5

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3