The problem asks us to find all first partial derivatives of the given functions. We will solve problems 3, 4, 6 and 7.

AnalysisPartial DerivativesMultivariable CalculusDifferentiation
2025/6/4

1. Problem Description

The problem asks us to find all first partial derivatives of the given functions. We will solve problems 3, 4, 6 and
7.

2. Solution Steps

Problem 3: f(x,y)=x2y2xyf(x, y) = \frac{x^2 - y^2}{xy}
We first compute the partial derivative with respect to xx, fxf_x.
f(x,y)=xyyxf(x, y) = \frac{x}{y} - \frac{y}{x}
fx(x,y)=x(xyyx)f_x(x, y) = \frac{\partial}{\partial x}(\frac{x}{y} - \frac{y}{x})
fx(x,y)=1y+yx2f_x(x, y) = \frac{1}{y} + \frac{y}{x^2}
fx(x,y)=x2+y2x2yf_x(x, y) = \frac{x^2 + y^2}{x^2y}
Next, we compute the partial derivative with respect to yy, fyf_y.
f(x,y)=xyyxf(x, y) = \frac{x}{y} - \frac{y}{x}
fy(x,y)=y(xyyx)f_y(x, y) = \frac{\partial}{\partial y}(\frac{x}{y} - \frac{y}{x})
fy(x,y)=xy21xf_y(x, y) = -\frac{x}{y^2} - \frac{1}{x}
fy(x,y)=x2+y2xy2f_y(x, y) = -\frac{x^2 + y^2}{xy^2}
Problem 4: f(x,y)=excosyf(x, y) = e^x \cos y
We first compute the partial derivative with respect to xx, fxf_x.
fx(x,y)=x(excosy)f_x(x, y) = \frac{\partial}{\partial x}(e^x \cos y)
fx(x,y)=excosyf_x(x, y) = e^x \cos y
Next, we compute the partial derivative with respect to yy, fyf_y.
fy(x,y)=y(excosy)f_y(x, y) = \frac{\partial}{\partial y}(e^x \cos y)
fy(x,y)=ex(siny)f_y(x, y) = e^x (-\sin y)
fy(x,y)=exsinyf_y(x, y) = -e^x \sin y
Problem 6: f(x,y)=(3x2+y2)1/3f(x, y) = (3x^2 + y^2)^{-1/3}
We first compute the partial derivative with respect to xx, fxf_x.
fx(x,y)=x((3x2+y2)1/3)f_x(x, y) = \frac{\partial}{\partial x}((3x^2 + y^2)^{-1/3})
fx(x,y)=13(3x2+y2)4/3(6x)f_x(x, y) = -\frac{1}{3} (3x^2 + y^2)^{-4/3} (6x)
fx(x,y)=2x(3x2+y2)4/3f_x(x, y) = -2x (3x^2 + y^2)^{-4/3}
fx(x,y)=2x(3x2+y2)4/3f_x(x, y) = \frac{-2x}{(3x^2 + y^2)^{4/3}}
Next, we compute the partial derivative with respect to yy, fyf_y.
fy(x,y)=y((3x2+y2)1/3)f_y(x, y) = \frac{\partial}{\partial y}((3x^2 + y^2)^{-1/3})
fy(x,y)=13(3x2+y2)4/3(2y)f_y(x, y) = -\frac{1}{3} (3x^2 + y^2)^{-4/3} (2y)
fy(x,y)=2y3(3x2+y2)4/3f_y(x, y) = -\frac{2y}{3} (3x^2 + y^2)^{-4/3}
fy(x,y)=2y3(3x2+y2)4/3f_y(x, y) = \frac{-2y}{3(3x^2 + y^2)^{4/3}}
Problem 7: f(x,y)=x2y2f(x, y) = \sqrt{x^2 - y^2}
We first compute the partial derivative with respect to xx, fxf_x.
f(x,y)=(x2y2)1/2f(x, y) = (x^2 - y^2)^{1/2}
fx(x,y)=x((x2y2)1/2)f_x(x, y) = \frac{\partial}{\partial x}((x^2 - y^2)^{1/2})
fx(x,y)=12(x2y2)1/2(2x)f_x(x, y) = \frac{1}{2} (x^2 - y^2)^{-1/2} (2x)
fx(x,y)=xx2y2f_x(x, y) = \frac{x}{\sqrt{x^2 - y^2}}
Next, we compute the partial derivative with respect to yy, fyf_y.
fy(x,y)=y((x2y2)1/2)f_y(x, y) = \frac{\partial}{\partial y}((x^2 - y^2)^{1/2})
fy(x,y)=12(x2y2)1/2(2y)f_y(x, y) = \frac{1}{2} (x^2 - y^2)^{-1/2} (-2y)
fy(x,y)=yx2y2f_y(x, y) = \frac{-y}{\sqrt{x^2 - y^2}}

3. Final Answer

Problem 3:
fx(x,y)=x2+y2x2yf_x(x, y) = \frac{x^2 + y^2}{x^2y}
fy(x,y)=x2+y2xy2f_y(x, y) = -\frac{x^2 + y^2}{xy^2}
Problem 4:
fx(x,y)=excosyf_x(x, y) = e^x \cos y
fy(x,y)=exsinyf_y(x, y) = -e^x \sin y
Problem 6:
fx(x,y)=2x(3x2+y2)4/3f_x(x, y) = \frac{-2x}{(3x^2 + y^2)^{4/3}}
fy(x,y)=2y3(3x2+y2)4/3f_y(x, y) = \frac{-2y}{3(3x^2 + y^2)^{4/3}}
Problem 7:
fx(x,y)=xx2y2f_x(x, y) = \frac{x}{\sqrt{x^2 - y^2}}
fy(x,y)=yx2y2f_y(x, y) = \frac{-y}{\sqrt{x^2 - y^2}}

Related problems in "Analysis"

The problem asks us to find several limits and analyze the continuity of functions. We will tackle e...

LimitsContinuityPiecewise FunctionsDirect Substitution
2025/6/6

We are asked to solve four problems: 2.1. Use the Intermediate Value Theorem to show that there is a...

Intermediate Value TheoremLimitsPrecise Definition of LimitTrigonometric Limits
2025/6/6

The problem consists of 5 parts. 1.1. Given two functions $f(x)$ and $g(x)$, we need to find their d...

Domain and RangeContinuityLimitsPiecewise FunctionsAbsolute Value FunctionsFloor Function
2025/6/6

We need to find the limit of the given functions in 2.1 (a), (b), (c), (d), and (e).

LimitsCalculusTrigonometric LimitsPiecewise Functions
2025/6/6

We are given the function $f(x) = \sqrt{1 - \frac{x+13}{x^2+4x+3}}$ and asked to find its domain and...

DomainContinuityFunctionsInequalitiesSquare RootGreatest Integer Function
2025/6/6

The problem consists of several parts: Question 1 asks to find the derivatives of $f(x) = x^3$ and $...

DerivativesLimitsOptimizationNewton's Law of CoolingIntegralsSubstitutionDefinite IntegralsInverse Trigonometric FunctionsHyperbolic Functions
2025/6/6

We are given the function $f(x) = x\sqrt{5-x}$. We need to find: (a) The domain of $f$. (b) The x an...

CalculusFunctionsDerivativesDomainInterceptsCritical PointsIncreasing/DecreasingConcavityAsymptotesSketching
2025/6/6

We need to solve the following problems: 1.1 (a) Find the limit $\lim_{h \to 0} \frac{\frac{1}{(x+h)...

LimitsContinuityDerivativesDomainTrigonometric FunctionsInverse Trigonometric FunctionsTangent LineFloor Function
2025/6/6

We need to solve four problems related to limits and derivatives. 2.1. Prove that $\lim_{x\to -2} x^...

LimitsDerivativesLimit ProofsFirst Principle of DerivativesTrigonometric LimitsDefinition of LimitInfinite Limits
2025/6/6

The problem consists of several sub-problems. 1.1. Consider the function $f(x) = \begin{cases} 1 - ...

FunctionsDomainRangeContinuityLimitsPiecewise FunctionsIntervals
2025/6/6