We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

AnalysisLimitsLogarithmsAsymptotic Analysis
2025/4/1

1. Problem Description

We need to evaluate the limit:
limx+ln((2x+1)22x2+3x)\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right).

2. Solution Steps

First, let's simplify the expression inside the logarithm:
(2x+1)22x2+3x=4x2+4x+12x2+3x\frac{(2x+1)^2}{2x^2+3x} = \frac{4x^2 + 4x + 1}{2x^2+3x}.
Now, we consider the limit as xx approaches infinity:
limx+4x2+4x+12x2+3x\lim_{x \to +\infty} \frac{4x^2 + 4x + 1}{2x^2+3x}.
To evaluate this limit, we can divide both the numerator and denominator by the highest power of xx, which is x2x^2:
limx+4+4x+1x22+3x\lim_{x \to +\infty} \frac{4 + \frac{4}{x} + \frac{1}{x^2}}{2 + \frac{3}{x}}.
As x+x \to +\infty, the terms 4x\frac{4}{x}, 1x2\frac{1}{x^2}, and 3x\frac{3}{x} approach

0. Therefore,

limx+4+4x+1x22+3x=4+0+02+0=42=2\lim_{x \to +\infty} \frac{4 + \frac{4}{x} + \frac{1}{x^2}}{2 + \frac{3}{x}} = \frac{4 + 0 + 0}{2 + 0} = \frac{4}{2} = 2.
Now, we can substitute this result back into the original limit:
limx+ln((2x+1)22x2+3x)=ln(limx+(2x+1)22x2+3x)=ln(2)\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right) = \ln\left(\lim_{x \to +\infty} \frac{(2x+1)^2}{2x^2+3x}\right) = \ln(2).

3. Final Answer

ln(2)\ln(2)

Related problems in "Analysis"

We are asked to evaluate the limit of a vector-valued function as $t$ approaches 0. The vector-value...

LimitsVector CalculusMultivariable CalculusLimits of Vector-Valued Functions
2025/4/11

We are given a function $f(x)$ defined as a determinant: $f(x) = \begin{vmatrix} \sin x & \cos x & \...

DeterminantsDerivativesTrigonometryCalculus
2025/4/10

The problem consists of several exercises. Exercise 5 asks us to consider two functions, $f(x) = 2\c...

TrigonometryTrigonometric IdentitiesFunctions
2025/4/10

We are asked to evaluate the following integral: $\int_0^{+\infty} \frac{dx}{(1+x)(\pi^2 + \ln^2 x)}...

Definite IntegralIntegration TechniquesSubstitutionCalculus
2025/4/7

We need to find the average rate of change of the function $f(x) = \frac{x-5}{x+3}$ from $x = -2$ to...

Average Rate of ChangeFunctionsCalculus
2025/4/5

If a function $f(x)$ has a maximum at the point $(2, 4)$, what does the reciprocal of $f(x)$, which ...

CalculusFunction AnalysisMaxima and MinimaReciprocal Function
2025/4/5

We are given the function $f(x) = x^2 + 1$ and we want to determine the interval(s) in which its rec...

CalculusDerivativesFunction AnalysisIncreasing Functions
2025/4/5

We are given the function $f(x) = -2x + 3$. We want to find where the reciprocal function, $g(x) = \...

CalculusDerivativesIncreasing FunctionsReciprocal FunctionsAsymptotes
2025/4/5

We need to find the horizontal asymptote of the function $f(x) = \frac{2x - 7}{5x + 3}$.

LimitsAsymptotesRational Functions
2025/4/5

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3