We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

AnalysisLimitsLogarithmsAsymptotic Analysis
2025/4/1

1. Problem Description

We need to evaluate the limit:
limx+ln((2x+1)22x2+3x)\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right).

2. Solution Steps

First, let's simplify the expression inside the logarithm:
(2x+1)22x2+3x=4x2+4x+12x2+3x\frac{(2x+1)^2}{2x^2+3x} = \frac{4x^2 + 4x + 1}{2x^2+3x}.
Now, we consider the limit as xx approaches infinity:
limx+4x2+4x+12x2+3x\lim_{x \to +\infty} \frac{4x^2 + 4x + 1}{2x^2+3x}.
To evaluate this limit, we can divide both the numerator and denominator by the highest power of xx, which is x2x^2:
limx+4+4x+1x22+3x\lim_{x \to +\infty} \frac{4 + \frac{4}{x} + \frac{1}{x^2}}{2 + \frac{3}{x}}.
As x+x \to +\infty, the terms 4x\frac{4}{x}, 1x2\frac{1}{x^2}, and 3x\frac{3}{x} approach

0. Therefore,

limx+4+4x+1x22+3x=4+0+02+0=42=2\lim_{x \to +\infty} \frac{4 + \frac{4}{x} + \frac{1}{x^2}}{2 + \frac{3}{x}} = \frac{4 + 0 + 0}{2 + 0} = \frac{4}{2} = 2.
Now, we can substitute this result back into the original limit:
limx+ln((2x+1)22x2+3x)=ln(limx+(2x+1)22x2+3x)=ln(2)\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right) = \ln\left(\lim_{x \to +\infty} \frac{(2x+1)^2}{2x^2+3x}\right) = \ln(2).

3. Final Answer

ln(2)\ln(2)

Related problems in "Analysis"

We are asked to evaluate the triple integral $I = \int_0^{\log_e 2} \int_0^x \int_0^{x+\log_e y} e^{...

Multiple IntegralsIntegration by PartsCalculus
2025/6/4

The problem asks us to evaluate the following limit: $ \lim_{x\to\frac{\pi}{3}} \frac{\sqrt{3}(\frac...

LimitsTrigonometryCalculus
2025/6/4

We need to evaluate the limit of the expression $(x + \sqrt{x^2 - 9})$ as $x$ approaches negative in...

LimitsCalculusFunctionsConjugateInfinity
2025/6/4

The problem asks to prove that $\int_0^1 \ln(\frac{\varphi - x^2}{\varphi + x^2}) \frac{dx}{x\sqrt{1...

Definite IntegralsCalculusIntegration TechniquesTrigonometric SubstitutionImproper Integrals
2025/6/4

The problem defines a harmonic function as a function of two variables that satisfies Laplace's equa...

Partial DerivativesLaplace's EquationHarmonic FunctionMultivariable Calculus
2025/6/4

The problem asks us to find all first partial derivatives of the given functions. We will solve pro...

Partial DerivativesMultivariable CalculusDifferentiation
2025/6/4

We are asked to find the first partial derivatives of the given functions. 3. $f(x, y) = \frac{x^2 -...

Partial DerivativesMultivariable CalculusDifferentiation
2025/6/4

The problem asks us to find all first partial derivatives of each function given. Let's solve proble...

Partial DerivativesChain RuleMultivariable Calculus
2025/6/4

The problem is to evaluate the indefinite integral of $x^n$ with respect to $x$, i.e., $\int x^n \, ...

IntegrationIndefinite IntegralPower Rule
2025/6/4

We need to find the limit of the function $x + \sqrt{x^2 + 9}$ as $x$ approaches negative infinity. ...

LimitsFunctionsCalculusInfinite LimitsConjugate
2025/6/2