We are given the equation $\int \frac{1}{tan(y)} dy = \int x dx$ and asked to solve it.

AnalysisIntegrationTrigonometric FunctionsIndefinite IntegralsDifferential Equations
2025/7/12

1. Problem Description

We are given the equation 1tan(y)dy=xdx\int \frac{1}{tan(y)} dy = \int x dx and asked to solve it.

2. Solution Steps

First, we rewrite 1tan(y)\frac{1}{tan(y)} as cot(y)cot(y). Thus, the equation becomes:
cot(y)dy=xdx\int cot(y) dy = \int x dx
We know that cot(y)dy=lnsin(y)+C1\int cot(y) dy = ln|sin(y)| + C_1 and xdx=x22+C2\int x dx = \frac{x^2}{2} + C_2.
Therefore, lnsin(y)+C1=x22+C2ln|sin(y)| + C_1 = \frac{x^2}{2} + C_2.
Combining the constants, we get lnsin(y)=x22+Cln|sin(y)| = \frac{x^2}{2} + C, where C=C2C1C = C_2 - C_1.
Taking the exponential of both sides, we have sin(y)=ex22+C=ex22eC|sin(y)| = e^{\frac{x^2}{2} + C} = e^{\frac{x^2}{2}}e^C.
We can write eCe^C as another constant AA, so sin(y)=Aex22|sin(y)| = Ae^{\frac{x^2}{2}}.
Then, sin(y)=±Aex22sin(y) = \pm Ae^{\frac{x^2}{2}}. Let B=±AB = \pm A, so sin(y)=Bex22sin(y) = Be^{\frac{x^2}{2}}.
Thus, y=arcsin(Bex22)y = arcsin(Be^{\frac{x^2}{2}}).
cot(y)dy=lnsin(y)+C1\int cot(y)dy = ln|sin(y)| + C_1
xdx=x22+C2\int xdx = \frac{x^2}{2} + C_2
lnsin(y)=x22+Cln|sin(y)| = \frac{x^2}{2} + C, where C=C2C1C=C_2 - C_1
sin(y)=ex22+C=ex22eC|sin(y)| = e^{\frac{x^2}{2} + C} = e^{\frac{x^2}{2}}e^C
sin(y)=Aex22|sin(y)| = A e^{\frac{x^2}{2}}, where A=eCA = e^C
sin(y)=±Aex22sin(y) = \pm A e^{\frac{x^2}{2}}
y=arcsin(±Aex22)y = arcsin(\pm A e^{\frac{x^2}{2}})

3. Final Answer

y=arcsin(Aex22)y = arcsin(Ae^{\frac{x^2}{2}}), where A is a constant.

Related problems in "Analysis"

We are given the function $f(x) = (x+1)(x+2)(x+3)...(x+100)$. We need to find the derivative of $f(x...

DifferentiationDerivativesProduct RuleLimitsFactorials
2025/7/15

We need to evaluate the definite integral $I = \int_{-4}^{0} \frac{1}{\sqrt{4-x}} dx$.

Definite IntegralSubstitutionIntegration TechniquesCalculus
2025/7/14

We need to evaluate the limit of the expression $\frac{x-3}{1-\sqrt{4-x}}$ as $x$ approaches $3$.

LimitsCalculusIndeterminate FormsConjugateAlgebraic Manipulation
2025/7/11

We need to evaluate the limit: $\lim_{x\to 3} \frac{x-3}{1 - \sqrt{4-x}}$.

LimitsIndeterminate FormsConjugateRationalization
2025/7/11

We are asked to find the limit of the function $\frac{2x^2 + 3x + 4}{x-1}$ as $x$ approaches 1 from ...

LimitsCalculusFunctions
2025/7/8

The problem asks us to sketch the graphs of two functions: (1) $y = x\sqrt{4-x^2}$ (2) $y = e^{-x} +...

GraphingCalculusDerivativesMaxima and MinimaConcavityInflection PointsDomainSymmetry
2025/7/3

The problem asks to sketch the graph of the function $y = x\sqrt{4 - x^2}$.

CalculusFunction AnalysisDerivativesGraphingDomainCritical PointsLocal Maxima/MinimaOdd Functions
2025/7/3

We are asked to find the sum of the series $\frac{1}{2^2-1} + \frac{1}{4^2-1} + \frac{1}{6^2-1} + \d...

SeriesSummationPartial FractionsTelescoping Series
2025/7/3

The problem asks to evaluate several natural logarithm expressions. The expressions are: 1. $ln(\fra...

LogarithmsNatural LogarithmExponentsLogarithmic Properties
2025/7/3

The problem requires us to analyze a given graph of a function and determine the following: - The in...

Function AnalysisIncreasing and Decreasing IntervalsDomain and Range
2025/7/3