We can solve this integral using a simple substitution. Let u=4−x. Then, du=−dx, which implies dx=−du. When x=−4, u=4−(−4)=8. When x=0, u=4−0=4. So, the integral becomes:
I=∫84u1(−du)=−∫84u−1/2du. We can reverse the limits of integration and change the sign:
I=∫48u−1/2du. Now, we can integrate u−1/2 with respect to u: ∫u−1/2du=(−1/2)+1u(−1/2)+1+C=1/2u1/2+C=2u+C. Therefore,
I=∫48u−1/2du=[2u]48=28−24=24⋅2−2(2)=2(22)−4=42−4.