We are given the function $f(x) = (x+1)(x+2)(x+3)...(x+100)$. We need to find the derivative of $f(x)$ and evaluate it at $x = -1$.

AnalysisDifferentiationDerivativesProduct RuleLimitsFactorials
2025/7/15

1. Problem Description

We are given the function f(x)=(x+1)(x+2)(x+3)...(x+100)f(x) = (x+1)(x+2)(x+3)...(x+100). We need to find the derivative of f(x)f(x) and evaluate it at x=1x = -1.

2. Solution Steps

First, we take the natural logarithm of both sides of the equation:
ln(f(x))=ln((x+1)(x+2)(x+3)...(x+100))ln(f(x)) = ln((x+1)(x+2)(x+3)...(x+100))
ln(f(x))=ln(x+1)+ln(x+2)+ln(x+3)+...+ln(x+100)ln(f(x)) = ln(x+1) + ln(x+2) + ln(x+3) + ... + ln(x+100)
Now, we differentiate both sides with respect to x:
f(x)f(x)=1x+1+1x+2+1x+3+...+1x+100\frac{f'(x)}{f(x)} = \frac{1}{x+1} + \frac{1}{x+2} + \frac{1}{x+3} + ... + \frac{1}{x+100}
Then we have:
f(x)=f(x)(1x+1+1x+2+1x+3+...+1x+100)f'(x) = f(x) \left(\frac{1}{x+1} + \frac{1}{x+2} + \frac{1}{x+3} + ... + \frac{1}{x+100}\right)
f(x)=(x+1)(x+2)(x+3)...(x+100)(1x+1+1x+2+1x+3+...+1x+100)f'(x) = (x+1)(x+2)(x+3)...(x+100) \left(\frac{1}{x+1} + \frac{1}{x+2} + \frac{1}{x+3} + ... + \frac{1}{x+100}\right)
We need to evaluate f(1)f'(-1). When x=1x = -1, f(x)=(1+1)(1+2)(1+3)...(1+100)=0(1)(2)...(99)=0f(x) = (-1+1)(-1+2)(-1+3)...(-1+100) = 0 * (1)(2)...(99) = 0. So f(1)=0f(-1) = 0.
Then, we can examine the limit of the expression for f(x)f'(x) as xx approaches 1-1.
f(1)=limx1(x+1)(x+2)(x+3)...(x+100)(1x+1+1x+2+1x+3+...+1x+100)f'(-1) = \lim_{x \to -1} (x+1)(x+2)(x+3)...(x+100) \left(\frac{1}{x+1} + \frac{1}{x+2} + \frac{1}{x+3} + ... + \frac{1}{x+100}\right)
We can rewrite this as:
f(1)=limx1(x+2)(x+3)...(x+100)+(x+1)(x+2)(x+3)...(x+100)(1x+2+1x+3+...+1x+100)f'(-1) = \lim_{x \to -1} (x+2)(x+3)...(x+100) + (x+1)(x+2)(x+3)...(x+100) \left(\frac{1}{x+2} + \frac{1}{x+3} + ... + \frac{1}{x+100}\right)
Then we substitute x=1x = -1 into the first term:
(1+2)(1+3)...(1+100)=(1)(2)(3)...(99)=99!(-1+2)(-1+3)...(-1+100) = (1)(2)(3)...(99) = 99!
In the second term, when x=1x = -1, the expression (x+1)(x+2)...(x+100)(x+1)(x+2)...(x+100) becomes 0, so the entire term becomes

0. Therefore:

f(1)=99!+0=99!f'(-1) = 99! + 0 = 99!

3. Final Answer

f(1)=99!f'(-1) = 99!

Related problems in "Analysis"

We need to evaluate the definite integral $I = \int_{-4}^{0} \frac{1}{\sqrt{4-x}} dx$.

Definite IntegralSubstitutionIntegration TechniquesCalculus
2025/7/14

We are given the equation $\int \frac{1}{tan(y)} dy = \int x dx$ and asked to solve it.

IntegrationTrigonometric FunctionsIndefinite IntegralsDifferential Equations
2025/7/12

We need to evaluate the limit of the expression $\frac{x-3}{1-\sqrt{4-x}}$ as $x$ approaches $3$.

LimitsCalculusIndeterminate FormsConjugateAlgebraic Manipulation
2025/7/11

We need to evaluate the limit: $\lim_{x\to 3} \frac{x-3}{1 - \sqrt{4-x}}$.

LimitsIndeterminate FormsConjugateRationalization
2025/7/11

We are asked to find the limit of the function $\frac{2x^2 + 3x + 4}{x-1}$ as $x$ approaches 1 from ...

LimitsCalculusFunctions
2025/7/8

The problem asks us to sketch the graphs of two functions: (1) $y = x\sqrt{4-x^2}$ (2) $y = e^{-x} +...

GraphingCalculusDerivativesMaxima and MinimaConcavityInflection PointsDomainSymmetry
2025/7/3

The problem asks to sketch the graph of the function $y = x\sqrt{4 - x^2}$.

CalculusFunction AnalysisDerivativesGraphingDomainCritical PointsLocal Maxima/MinimaOdd Functions
2025/7/3

We are asked to find the sum of the series $\frac{1}{2^2-1} + \frac{1}{4^2-1} + \frac{1}{6^2-1} + \d...

SeriesSummationPartial FractionsTelescoping Series
2025/7/3

The problem asks to evaluate several natural logarithm expressions. The expressions are: 1. $ln(\fra...

LogarithmsNatural LogarithmExponentsLogarithmic Properties
2025/7/3

The problem requires us to analyze a given graph of a function and determine the following: - The in...

Function AnalysisIncreasing and Decreasing IntervalsDomain and Range
2025/7/3