First, we take the natural logarithm of both sides of the equation:
ln(f(x))=ln((x+1)(x+2)(x+3)...(x+100)) ln(f(x))=ln(x+1)+ln(x+2)+ln(x+3)+...+ln(x+100) Now, we differentiate both sides with respect to x:
f(x)f′(x)=x+11+x+21+x+31+...+x+1001 Then we have:
f′(x)=f(x)(x+11+x+21+x+31+...+x+1001) f′(x)=(x+1)(x+2)(x+3)...(x+100)(x+11+x+21+x+31+...+x+1001) We need to evaluate f′(−1). When x=−1, f(x)=(−1+1)(−1+2)(−1+3)...(−1+100)=0∗(1)(2)...(99)=0. So f(−1)=0. Then, we can examine the limit of the expression for f′(x) as x approaches −1. f′(−1)=limx→−1(x+1)(x+2)(x+3)...(x+100)(x+11+x+21+x+31+...+x+1001) We can rewrite this as:
f′(−1)=limx→−1(x+2)(x+3)...(x+100)+(x+1)(x+2)(x+3)...(x+100)(x+21+x+31+...+x+1001) Then we substitute x=−1 into the first term: (−1+2)(−1+3)...(−1+100)=(1)(2)(3)...(99)=99! In the second term, when x=−1, the expression (x+1)(x+2)...(x+100) becomes 0, so the entire term becomes