We need to find the indefinite integral of the function $e^{2x}\sin{x}$.

AnalysisIntegrationIntegration by PartsTrigonometric FunctionsExponential FunctionsIndefinite Integral
2025/3/11

1. Problem Description

We need to find the indefinite integral of the function e2xsinxe^{2x}\sin{x}.

2. Solution Steps

We will use integration by parts. The formula for integration by parts is
udv=uvvdu\int u dv = uv - \int v du.
Let u=sinxu = \sin{x} and dv=e2xdxdv = e^{2x} dx. Then du=cosxdxdu = \cos{x} dx and v=e2xdx=12e2xv = \int e^{2x} dx = \frac{1}{2} e^{2x}.
So, e2xsinxdx=12e2xsinx12e2xcosxdx=12e2xsinx12e2xcosxdx\int e^{2x} \sin{x} dx = \frac{1}{2} e^{2x} \sin{x} - \int \frac{1}{2} e^{2x} \cos{x} dx = \frac{1}{2} e^{2x} \sin{x} - \frac{1}{2} \int e^{2x} \cos{x} dx.
Now we need to integrate e2xcosxdx\int e^{2x} \cos{x} dx. We will use integration by parts again.
Let u=cosxu = \cos{x} and dv=e2xdxdv = e^{2x} dx. Then du=sinxdxdu = -\sin{x} dx and v=12e2xv = \frac{1}{2} e^{2x}.
So, e2xcosxdx=12e2xcosx12e2x(sinx)dx=12e2xcosx+12e2xsinxdx\int e^{2x} \cos{x} dx = \frac{1}{2} e^{2x} \cos{x} - \int \frac{1}{2} e^{2x} (-\sin{x}) dx = \frac{1}{2} e^{2x} \cos{x} + \frac{1}{2} \int e^{2x} \sin{x} dx.
Substituting this back into the first equation, we have:
e2xsinxdx=12e2xsinx12(12e2xcosx+12e2xsinxdx)\int e^{2x} \sin{x} dx = \frac{1}{2} e^{2x} \sin{x} - \frac{1}{2} \left( \frac{1}{2} e^{2x} \cos{x} + \frac{1}{2} \int e^{2x} \sin{x} dx \right)
e2xsinxdx=12e2xsinx14e2xcosx14e2xsinxdx\int e^{2x} \sin{x} dx = \frac{1}{2} e^{2x} \sin{x} - \frac{1}{4} e^{2x} \cos{x} - \frac{1}{4} \int e^{2x} \sin{x} dx
Now, we solve for the integral:
e2xsinxdx+14e2xsinxdx=12e2xsinx14e2xcosx\int e^{2x} \sin{x} dx + \frac{1}{4} \int e^{2x} \sin{x} dx = \frac{1}{2} e^{2x} \sin{x} - \frac{1}{4} e^{2x} \cos{x}
54e2xsinxdx=12e2xsinx14e2xcosx\frac{5}{4} \int e^{2x} \sin{x} dx = \frac{1}{2} e^{2x} \sin{x} - \frac{1}{4} e^{2x} \cos{x}
e2xsinxdx=45(12e2xsinx14e2xcosx)\int e^{2x} \sin{x} dx = \frac{4}{5} \left( \frac{1}{2} e^{2x} \sin{x} - \frac{1}{4} e^{2x} \cos{x} \right)
e2xsinxdx=25e2xsinx15e2xcosx+C\int e^{2x} \sin{x} dx = \frac{2}{5} e^{2x} \sin{x} - \frac{1}{5} e^{2x} \cos{x} + C
e2xsinxdx=15e2x(2sinxcosx)+C\int e^{2x} \sin{x} dx = \frac{1}{5} e^{2x} (2 \sin{x} - \cos{x}) + C

3. Final Answer

15e2x(2sinxcosx)+C\frac{1}{5} e^{2x} (2\sin{x} - \cos{x}) + C

Related problems in "Analysis"

The problem asks to find the equation of the tangent line to the curve defined by the function $f(x)...

CalculusDerivativesTangent LinesFunctionsCubic Functions
2025/6/12

We want to find the limit of the expression $\frac{\sin x - \sin x \cdot \cos x}{x^3}$ as $x$ approa...

LimitsTrigonometryL'Hopital's RuleCalculus
2025/6/11

The problem asks to find the derivative $y'$ of the function $y = \frac{2x}{\sqrt{x^2 + 2x + 2}}$. W...

DifferentiationChain RuleQuotient RuleDerivatives
2025/6/11

The problem asks to find the derivative $dy/dx$ given the equation $x = 5y^2 + 4/\sqrt{y}$. The answ...

CalculusDifferentiationImplicit DifferentiationDerivatives
2025/6/11

The problem is to find $\frac{dy}{dx}$ given the equation $\sin x + \frac{\log(2y)}{4y} = 5$. We nee...

CalculusImplicit DifferentiationDerivativesQuotient RuleLogarithmic Function
2025/6/11

The problem asks to find the derivative of the function $y = \sqrt{xe^{2x^2+3}}$.

CalculusDifferentiationChain RuleProduct RuleDerivativesExponential FunctionsSquare Root
2025/6/11

The problem is to find the derivative of the function $y = \frac{1}{3}x(\log x - 1)$ with respect to...

CalculusDifferentiationDerivativesLogarithmic FunctionsProduct Rule
2025/6/11

The problem is to find the derivative of the function $y = e^{\frac{1}{2}x} \sin^2(x)$ with respect ...

DifferentiationProduct RuleChain RuleTrigonometric Functions
2025/6/11

The problem asks us to find the derivative of the function $y = e^{\frac{1}{3}x}\sin^3 x$ with respe...

CalculusDifferentiationProduct RuleChain RuleTrigonometric FunctionsExponential Functions
2025/6/11

The problem consists of several calculus questions: a) Differentiate $f(x) = x^2$ from first princip...

CalculusDifferentiationIntegrationDerivativesDefinite IntegralIndefinite IntegralQuotient RuleFirst PrinciplesPartial Fractions
2025/6/10