We need to find the indefinite integral of the function $e^{2x}\sin{x}$.

AnalysisIntegrationIntegration by PartsTrigonometric FunctionsExponential FunctionsIndefinite Integral
2025/3/11

1. Problem Description

We need to find the indefinite integral of the function e2xsinxe^{2x}\sin{x}.

2. Solution Steps

We will use integration by parts. The formula for integration by parts is
udv=uvvdu\int u dv = uv - \int v du.
Let u=sinxu = \sin{x} and dv=e2xdxdv = e^{2x} dx. Then du=cosxdxdu = \cos{x} dx and v=e2xdx=12e2xv = \int e^{2x} dx = \frac{1}{2} e^{2x}.
So, e2xsinxdx=12e2xsinx12e2xcosxdx=12e2xsinx12e2xcosxdx\int e^{2x} \sin{x} dx = \frac{1}{2} e^{2x} \sin{x} - \int \frac{1}{2} e^{2x} \cos{x} dx = \frac{1}{2} e^{2x} \sin{x} - \frac{1}{2} \int e^{2x} \cos{x} dx.
Now we need to integrate e2xcosxdx\int e^{2x} \cos{x} dx. We will use integration by parts again.
Let u=cosxu = \cos{x} and dv=e2xdxdv = e^{2x} dx. Then du=sinxdxdu = -\sin{x} dx and v=12e2xv = \frac{1}{2} e^{2x}.
So, e2xcosxdx=12e2xcosx12e2x(sinx)dx=12e2xcosx+12e2xsinxdx\int e^{2x} \cos{x} dx = \frac{1}{2} e^{2x} \cos{x} - \int \frac{1}{2} e^{2x} (-\sin{x}) dx = \frac{1}{2} e^{2x} \cos{x} + \frac{1}{2} \int e^{2x} \sin{x} dx.
Substituting this back into the first equation, we have:
e2xsinxdx=12e2xsinx12(12e2xcosx+12e2xsinxdx)\int e^{2x} \sin{x} dx = \frac{1}{2} e^{2x} \sin{x} - \frac{1}{2} \left( \frac{1}{2} e^{2x} \cos{x} + \frac{1}{2} \int e^{2x} \sin{x} dx \right)
e2xsinxdx=12e2xsinx14e2xcosx14e2xsinxdx\int e^{2x} \sin{x} dx = \frac{1}{2} e^{2x} \sin{x} - \frac{1}{4} e^{2x} \cos{x} - \frac{1}{4} \int e^{2x} \sin{x} dx
Now, we solve for the integral:
e2xsinxdx+14e2xsinxdx=12e2xsinx14e2xcosx\int e^{2x} \sin{x} dx + \frac{1}{4} \int e^{2x} \sin{x} dx = \frac{1}{2} e^{2x} \sin{x} - \frac{1}{4} e^{2x} \cos{x}
54e2xsinxdx=12e2xsinx14e2xcosx\frac{5}{4} \int e^{2x} \sin{x} dx = \frac{1}{2} e^{2x} \sin{x} - \frac{1}{4} e^{2x} \cos{x}
e2xsinxdx=45(12e2xsinx14e2xcosx)\int e^{2x} \sin{x} dx = \frac{4}{5} \left( \frac{1}{2} e^{2x} \sin{x} - \frac{1}{4} e^{2x} \cos{x} \right)
e2xsinxdx=25e2xsinx15e2xcosx+C\int e^{2x} \sin{x} dx = \frac{2}{5} e^{2x} \sin{x} - \frac{1}{5} e^{2x} \cos{x} + C
e2xsinxdx=15e2x(2sinxcosx)+C\int e^{2x} \sin{x} dx = \frac{1}{5} e^{2x} (2 \sin{x} - \cos{x}) + C

3. Final Answer

15e2x(2sinxcosx)+C\frac{1}{5} e^{2x} (2\sin{x} - \cos{x}) + C

Related problems in "Analysis"

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1

The problem asks us to evaluate the integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$.

IntegrationDefinite IntegralSubstitutionTrigonometric Substitution
2025/4/1

We are asked to evaluate the definite integral $\int_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}} \fr...

Definite IntegralIntegrationTrigonometric SubstitutionInverse Trigonometric Functions
2025/4/1

We are asked to find the derivative of the function $f(x) = (x+2)^x$ using logarithmic differentiati...

DifferentiationLogarithmic DifferentiationChain RuleProduct RuleDerivatives
2025/4/1

We need to evaluate the integral $\int \frac{e^x}{e^{3x}-8} dx$.

IntegrationCalculusPartial FractionsTrigonometric Substitution
2025/4/1

We are asked to evaluate the integral: $\int \frac{e^{2x}}{e^{3x}-8} dx$

IntegrationCalculusSubstitutionPartial FractionsTrigonometric Substitution
2025/4/1