The problem asks us to evaluate the infinite sum $\sum_{k=1}^{\infty} \frac{4^{k+1}}{7^{k-1}}$.

AnalysisInfinite SeriesGeometric SeriesConvergence
2025/3/6

1. Problem Description

The problem asks us to evaluate the infinite sum k=14k+17k1\sum_{k=1}^{\infty} \frac{4^{k+1}}{7^{k-1}}.

2. Solution Steps

We can rewrite the given sum as follows:
k=14k+17k1=k=14k47k71=k=1474k7k=28k=1(47)k\sum_{k=1}^{\infty} \frac{4^{k+1}}{7^{k-1}} = \sum_{k=1}^{\infty} \frac{4^k \cdot 4}{7^k \cdot 7^{-1}} = \sum_{k=1}^{\infty} \frac{4 \cdot 7 \cdot 4^k}{7^k} = 28 \sum_{k=1}^{\infty} \left(\frac{4}{7}\right)^k.
The sum k=1(47)k\sum_{k=1}^{\infty} \left(\frac{4}{7}\right)^k is a geometric series with first term a=47a = \frac{4}{7} and common ratio r=47r = \frac{4}{7}.
Since r=47<1|r| = \left|\frac{4}{7}\right| < 1, the geometric series converges, and its sum is given by
k=1ark1=a1r\sum_{k=1}^{\infty} ar^{k-1} = \frac{a}{1-r}.
In our case, we have k=1(47)k=k=147(47)k1\sum_{k=1}^{\infty} \left(\frac{4}{7}\right)^k = \sum_{k=1}^{\infty} \frac{4}{7} \cdot \left(\frac{4}{7}\right)^{k-1}.
So the sum is 47147=4737=43\frac{\frac{4}{7}}{1-\frac{4}{7}} = \frac{\frac{4}{7}}{\frac{3}{7}} = \frac{4}{3}.
Then, we have
28k=1(47)k=2843=112328 \sum_{k=1}^{\infty} \left(\frac{4}{7}\right)^k = 28 \cdot \frac{4}{3} = \frac{112}{3}.

3. Final Answer

1123\frac{112}{3}

Related problems in "Analysis"

We need to find the average rate of change of the function $f(x) = \frac{x-5}{x+3}$ from $x = -2$ to...

Average Rate of ChangeFunctionsCalculus
2025/4/5

If a function $f(x)$ has a maximum at the point $(2, 4)$, what does the reciprocal of $f(x)$, which ...

CalculusFunction AnalysisMaxima and MinimaReciprocal Function
2025/4/5

We are given the function $f(x) = x^2 + 1$ and we want to determine the interval(s) in which its rec...

CalculusDerivativesFunction AnalysisIncreasing Functions
2025/4/5

We are given the function $f(x) = -2x + 3$. We want to find where the reciprocal function, $g(x) = \...

CalculusDerivativesIncreasing FunctionsReciprocal FunctionsAsymptotes
2025/4/5

We need to find the horizontal asymptote of the function $f(x) = \frac{2x - 7}{5x + 3}$.

LimitsAsymptotesRational Functions
2025/4/5

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1