We want to evaluate the integral $\int \frac{x^2 + 72}{(x \sin x + 9 \cos x)^2} dx$.

AnalysisIntegrationCalculusTrigonometryQuotient Rule
2025/3/11

1. Problem Description

We want to evaluate the integral x2+72(xsinx+9cosx)2dx\int \frac{x^2 + 72}{(x \sin x + 9 \cos x)^2} dx.

2. Solution Steps

Let's try to find a function whose derivative is close to the integrand. We note that
ddx(xsinx+9cosx)=sinx+xcosx9sinx=xcosx8sinx\frac{d}{dx} (x \sin x + 9 \cos x) = \sin x + x \cos x - 9 \sin x = x \cos x - 8 \sin x.
This doesn't seem to help much.
Instead, consider ddx(f(x)xsinx+9cosx)\frac{d}{dx} \left(\frac{f(x)}{x \sin x + 9 \cos x}\right) for some function f(x)f(x).
Using the quotient rule, we have
ddx(f(x)xsinx+9cosx)=f(x)(xsinx+9cosx)f(x)(xcosx8sinx)(xsinx+9cosx)2\frac{d}{dx} \left(\frac{f(x)}{x \sin x + 9 \cos x}\right) = \frac{f'(x)(x \sin x + 9 \cos x) - f(x)(x \cos x - 8 \sin x)}{(x \sin x + 9 \cos x)^2}.
If we choose f(x)=xcosx8sinxf(x) = x \cos x - 8 \sin x, then f(x)=cosxxsinx8cosx=xsinx7cosxf'(x) = \cos x - x \sin x - 8 \cos x = -x \sin x - 7 \cos x.
Then
ddx(xcosx8sinxxsinx+9cosx)=(xsinx7cosx)(xsinx+9cosx)(xcosx8sinx)(xcosx8sinx)(xsinx+9cosx)2\frac{d}{dx} \left(\frac{x \cos x - 8 \sin x}{x \sin x + 9 \cos x}\right) = \frac{(-x \sin x - 7 \cos x)(x \sin x + 9 \cos x) - (x \cos x - 8 \sin x)(x \cos x - 8 \sin x)}{(x \sin x + 9 \cos x)^2}
=x2sin2x9xsinxcosx7xsinxcosx63cos2x(x2cos2x8xsinxcosx8xsinxcosx+64sin2x)(xsinx+9cosx)2= \frac{-x^2 \sin^2 x - 9x \sin x \cos x - 7x \sin x \cos x - 63 \cos^2 x - (x^2 \cos^2 x - 8x \sin x \cos x - 8x \sin x \cos x + 64 \sin^2 x)}{(x \sin x + 9 \cos x)^2}
=x2sin2x16xsinxcosx63cos2xx2cos2x+16xsinxcosx64sin2x(xsinx+9cosx)2= \frac{-x^2 \sin^2 x - 16x \sin x \cos x - 63 \cos^2 x - x^2 \cos^2 x + 16x \sin x \cos x - 64 \sin^2 x}{(x \sin x + 9 \cos x)^2}
=x2(sin2x+cos2x)(63cos2x+64sin2x)(xsinx+9cosx)2=x263cos2x64sin2x(xsinx+9cosx)2= \frac{-x^2 (\sin^2 x + \cos^2 x) - (63 \cos^2 x + 64 \sin^2 x)}{(x \sin x + 9 \cos x)^2} = \frac{-x^2 - 63 \cos^2 x - 64 \sin^2 x}{(x \sin x + 9 \cos x)^2}
=x263(cos2x+sin2x)sin2x(xsinx+9cosx)2=x263sin2x(xsinx+9cosx)2= \frac{-x^2 - 63 (\cos^2 x + \sin^2 x) - \sin^2 x}{(x \sin x + 9 \cos x)^2} = \frac{-x^2 - 63 - \sin^2 x}{(x \sin x + 9 \cos x)^2}
This doesn't work.
Consider ddxxcosx+asinxxsinx+9cosx\frac{d}{dx} \frac{x \cos x + a \sin x}{x \sin x + 9 \cos x}.
The derivative is (cosxxsinx+acosx)(xsinx+9cosx)(xcosx+asinx)(xcosx8sinx)(xsinx+9cosx)2\frac{(\cos x - x \sin x + a \cos x)(x \sin x + 9 \cos x) - (x \cos x + a \sin x)(x \cos x - 8 \sin x)}{(x \sin x + 9 \cos x)^2}
=xsinxcosx+9cos2xx2sin2x9xsinxcosx+axsinxcosx+9acos2xx2cos2x+8xsinxcosxaxsinxcosx+8asin2x(xsinx+9cosx)2= \frac{x \sin x \cos x + 9 \cos^2 x - x^2 \sin^2 x - 9x \sin x \cos x + ax \sin x \cos x + 9a \cos^2 x - x^2 \cos^2 x + 8x \sin x \cos x - ax \sin x \cos x + 8a \sin^2 x}{(x \sin x + 9 \cos x)^2}
=x2(sin2x+cos2x)+xsinxcosx9xsinxcosx+8xsinxcosx+9cos2x+9acos2x+8asin2x(xsinx+9cosx)2= \frac{-x^2(\sin^2 x + \cos^2 x) + x \sin x \cos x - 9x \sin x \cos x + 8x \sin x \cos x + 9 \cos^2 x + 9a \cos^2 x + 8a \sin^2 x}{(x \sin x + 9 \cos x)^2}
=x2+(9+9a)cos2x+8asin2x(xsinx+9cosx)2= \frac{-x^2 + (9+9a)\cos^2 x + 8a \sin^2 x}{(x \sin x + 9 \cos x)^2}.
We want 9+9a=72/9=89 + 9a = 72/9 = 8 and 8a=08a = 0.
9(1+a)=89(1+a) = 8 so 1+a=8/91+a = 8/9 and a=1/9a = -1/9. This doesn't work.
We can rewrite x2+72=(x2+81)9x^2 + 72 = (x^2+81) - 9.
Let's try 9sinxxcosxxsinx+9cosx\frac{9 \sin x - x \cos x}{x \sin x + 9 \cos x}. Its derivative is
(9cosxcosx+xsinx)(xsinx+9cosx)(9sinxxcosx)(xcosx8sinx)(xsinx+9cosx)2\frac{(9 \cos x - \cos x + x \sin x)(x \sin x + 9 \cos x) - (9 \sin x - x \cos x)(x \cos x - 8 \sin x)}{(x \sin x + 9 \cos x)^2}
=(8cosx+xsinx)(xsinx+9cosx)(9sinxxcosx)(xcosx8sinx)(xsinx+9cosx)2= \frac{(8 \cos x + x \sin x)(x \sin x + 9 \cos x) - (9 \sin x - x \cos x)(x \cos x - 8 \sin x)}{(x \sin x + 9 \cos x)^2}
=8xsinxcosx+72cos2x+x2sin2x+9xsinxcosx(9xsinxcosx72sin2xx2cos2x+8xsinxcosx)(xsinx+9cosx)2= \frac{8x \sin x \cos x + 72 \cos^2 x + x^2 \sin^2 x + 9x \sin x \cos x - (9x \sin x \cos x - 72 \sin^2 x - x^2 \cos^2 x + 8x \sin x \cos x)}{(x \sin x + 9 \cos x)^2}
=8xsinxcosx+72cos2x+x2sin2x+9xsinxcosx9xsinxcosx+72sin2x+x2cos2x8xsinxcosx(xsinx+9cosx)2= \frac{8x \sin x \cos x + 72 \cos^2 x + x^2 \sin^2 x + 9x \sin x \cos x - 9x \sin x \cos x + 72 \sin^2 x + x^2 \cos^2 x - 8x \sin x \cos x}{(x \sin x + 9 \cos x)^2}
=x2(sin2x+cos2x)+72(cos2x+sin2x)(xsinx+9cosx)2=x2+72(xsinx+9cosx)2= \frac{x^2(\sin^2 x + \cos^2 x) + 72(\cos^2 x + \sin^2 x)}{(x \sin x + 9 \cos x)^2} = \frac{x^2 + 72}{(x \sin x + 9 \cos x)^2}.
Thus, x2+72(xsinx+9cosx)2dx=9sinxxcosxxsinx+9cosx+C\int \frac{x^2 + 72}{(x \sin x + 9 \cos x)^2} dx = \frac{9 \sin x - x \cos x}{x \sin x + 9 \cos x} + C.

3. Final Answer

9sinxxcosxxsinx+9cosx+C\frac{9 \sin x - x \cos x}{x \sin x + 9 \cos x} + C

Related problems in "Analysis"

We are asked to evaluate the triple integral $I = \int_0^{\log_e 2} \int_0^x \int_0^{x+\log_e y} e^{...

Multiple IntegralsIntegration by PartsCalculus
2025/6/4

The problem asks us to evaluate the following limit: $ \lim_{x\to\frac{\pi}{3}} \frac{\sqrt{3}(\frac...

LimitsTrigonometryCalculus
2025/6/4

We need to evaluate the limit of the expression $(x + \sqrt{x^2 - 9})$ as $x$ approaches negative in...

LimitsCalculusFunctionsConjugateInfinity
2025/6/4

The problem asks to prove that $\int_0^1 \ln(\frac{\varphi - x^2}{\varphi + x^2}) \frac{dx}{x\sqrt{1...

Definite IntegralsCalculusIntegration TechniquesTrigonometric SubstitutionImproper Integrals
2025/6/4

The problem defines a harmonic function as a function of two variables that satisfies Laplace's equa...

Partial DerivativesLaplace's EquationHarmonic FunctionMultivariable Calculus
2025/6/4

The problem asks us to find all first partial derivatives of the given functions. We will solve pro...

Partial DerivativesMultivariable CalculusDifferentiation
2025/6/4

We are asked to find the first partial derivatives of the given functions. 3. $f(x, y) = \frac{x^2 -...

Partial DerivativesMultivariable CalculusDifferentiation
2025/6/4

The problem asks us to find all first partial derivatives of each function given. Let's solve proble...

Partial DerivativesChain RuleMultivariable Calculus
2025/6/4

The problem is to evaluate the indefinite integral of $x^n$ with respect to $x$, i.e., $\int x^n \, ...

IntegrationIndefinite IntegralPower Rule
2025/6/4

We need to find the limit of the function $x + \sqrt{x^2 + 9}$ as $x$ approaches negative infinity. ...

LimitsFunctionsCalculusInfinite LimitsConjugate
2025/6/2