Let's try to find a function whose derivative is close to the integrand. We note that
dxd(xsinx+9cosx)=sinx+xcosx−9sinx=xcosx−8sinx. This doesn't seem to help much.
Instead, consider dxd(xsinx+9cosxf(x)) for some function f(x). Using the quotient rule, we have
dxd(xsinx+9cosxf(x))=(xsinx+9cosx)2f′(x)(xsinx+9cosx)−f(x)(xcosx−8sinx). If we choose f(x)=xcosx−8sinx, then f′(x)=cosx−xsinx−8cosx=−xsinx−7cosx. Then
dxd(xsinx+9cosxxcosx−8sinx)=(xsinx+9cosx)2(−xsinx−7cosx)(xsinx+9cosx)−(xcosx−8sinx)(xcosx−8sinx) =(xsinx+9cosx)2−x2sin2x−9xsinxcosx−7xsinxcosx−63cos2x−(x2cos2x−8xsinxcosx−8xsinxcosx+64sin2x) =(xsinx+9cosx)2−x2sin2x−16xsinxcosx−63cos2x−x2cos2x+16xsinxcosx−64sin2x =(xsinx+9cosx)2−x2(sin2x+cos2x)−(63cos2x+64sin2x)=(xsinx+9cosx)2−x2−63cos2x−64sin2x =(xsinx+9cosx)2−x2−63(cos2x+sin2x)−sin2x=(xsinx+9cosx)2−x2−63−sin2x This doesn't work.
Consider dxdxsinx+9cosxxcosx+asinx. The derivative is (xsinx+9cosx)2(cosx−xsinx+acosx)(xsinx+9cosx)−(xcosx+asinx)(xcosx−8sinx) =(xsinx+9cosx)2xsinxcosx+9cos2x−x2sin2x−9xsinxcosx+axsinxcosx+9acos2x−x2cos2x+8xsinxcosx−axsinxcosx+8asin2x =(xsinx+9cosx)2−x2(sin2x+cos2x)+xsinxcosx−9xsinxcosx+8xsinxcosx+9cos2x+9acos2x+8asin2x =(xsinx+9cosx)2−x2+(9+9a)cos2x+8asin2x. We want 9+9a=72/9=8 and 8a=0. 9(1+a)=8 so 1+a=8/9 and a=−1/9. This doesn't work. We can rewrite x2+72=(x2+81)−9. Let's try xsinx+9cosx9sinx−xcosx. Its derivative is (xsinx+9cosx)2(9cosx−cosx+xsinx)(xsinx+9cosx)−(9sinx−xcosx)(xcosx−8sinx) =(xsinx+9cosx)2(8cosx+xsinx)(xsinx+9cosx)−(9sinx−xcosx)(xcosx−8sinx) =(xsinx+9cosx)28xsinxcosx+72cos2x+x2sin2x+9xsinxcosx−(9xsinxcosx−72sin2x−x2cos2x+8xsinxcosx) =(xsinx+9cosx)28xsinxcosx+72cos2x+x2sin2x+9xsinxcosx−9xsinxcosx+72sin2x+x2cos2x−8xsinxcosx =(xsinx+9cosx)2x2(sin2x+cos2x)+72(cos2x+sin2x)=(xsinx+9cosx)2x2+72. Thus, ∫(xsinx+9cosx)2x2+72dx=xsinx+9cosx9sinx−xcosx+C.