連立方程式 $x - 2y = 3$ ...(1) $2x + 4y = 14$ ...(2) を加減法で解くために、式(1)の両辺をある数 $a$ 倍して、$y$ の係数の絶対値を式(2)の $y$ の係数の絶対値と一致させる。この時、$a$ の値を求める。

代数学連立方程式加減法方程式
2025/7/29

1. 問題の内容

連立方程式
x2y=3x - 2y = 3 ...(1)
2x+4y=142x + 4y = 14 ...(2)
を加減法で解くために、式(1)の両辺をある数 aa 倍して、yy の係数の絶対値を式(2)の yy の係数の絶対値と一致させる。この時、aa の値を求める。

2. 解き方の手順

式(1)の yy の係数は 2-2 であり、式(2)の yy の係数は 44 である。
yy の係数の絶対値をそろえるためには、式(1)の yy の係数の絶対値である 2=2|-2|=244にすれば良い。
したがって、式(1)全体を 22 倍すれば、yy の係数の絶対値は 44 となる。
(x2y)×2=3×2(x - 2y) \times 2 = 3 \times 2
2x4y=62x - 4y = 6

3. 最終的な答え

a=2a = 2

「代数学」の関連問題

与えられた二次関数を平方完成させる問題です。全部で10問あります。

二次関数平方完成
2025/7/29

与えられた2次関数を平方完成させる問題です。全部で10問あります。 (1) $y = x^2 - 2x$ (2) $y = x^2 - 2x - 10$ (3) $y = -2x^2 + 16x + ...

二次関数平方完成
2025/7/29

与えられた2次関数の式を解き、それぞれの2次関数の解を求めます。 (8) $y = x^2 + 3x - 5$ (10) $y = x^2 + 5x + 4$

二次関数二次方程式解の公式因数分解
2025/7/29

与えられた2次関数を平方完成させる問題です。具体的には、以下の10個の2次関数をそれぞれ平方完成させます。 (1) $y = x^2 - x + 5$ (2) $y = x^2 + 2x - 1$ (...

二次関数平方完成
2025/7/29

問題は、与えられた二次関数を平方完成させることです。具体的には、以下の2つの問題があります。 (7) $y = x^2 - 8x + 21$ (9) $y = x^2 - 4x + 5$

二次関数平方完成二次関数の標準形
2025/7/29

与えられた二次関数を平方完成する問題です。具体的には、以下の3つの関数を平方完成します。 (6) $y = x^2 + 8x + 11$ (8) $y = x^2 + 2x - 1$ (10) $y ...

二次関数平方完成関数
2025/7/29

与えられた2次関数 $y = x^2 + 8x + 15$ を平方完成する問題です。

二次関数平方完成
2025/7/29

与えられた二次関数 $y = x^2 - 2x + 3$ を平方完成の形に変形する問題です。

二次関数平方完成関数の変形
2025/7/29

与えられた二次関数 $y = x^2 - 2x + 3$ を平方完成させる問題です。

二次関数平方完成関数のグラフ
2025/7/29

ベクトル $a$ と $b$ が与えられたとき、外積 $a \times b$ を求める問題です。$i, j, k$ はそれぞれ $x, y, z$ 方向の単位ベクトルです。

ベクトル外積線形代数ベクトルの演算
2025/7/29