不等式 $2(4x - 1) \ge 5x - 11$ を解いて、$x$の範囲を求める問題です。

代数学不等式一次不等式計算
2025/7/29

1. 問題の内容

不等式 2(4x1)5x112(4x - 1) \ge 5x - 11 を解いて、xxの範囲を求める問題です。

2. 解き方の手順

まず、不等式の左辺を展開します。
2(4x1)=8x22(4x - 1) = 8x - 2
したがって、不等式は
8x25x118x - 2 \ge 5x - 11
となります。
次に、xxを含む項を左辺に、定数項を右辺に移項します。
8x5x11+28x - 5x \ge -11 + 2
これを計算すると
3x93x \ge -9
となります。
最後に、両辺を3で割ります。
3x393\frac{3x}{3} \ge \frac{-9}{3}
これにより
x3x \ge -3
が得られます。

3. 最終的な答え

x3x \ge -3

「代数学」の関連問題

与えられた二次関数を平方完成させる問題です。全部で10問あります。

二次関数平方完成
2025/7/29

与えられた2次関数を平方完成させる問題です。全部で10問あります。 (1) $y = x^2 - 2x$ (2) $y = x^2 - 2x - 10$ (3) $y = -2x^2 + 16x + ...

二次関数平方完成
2025/7/29

与えられた2次関数の式を解き、それぞれの2次関数の解を求めます。 (8) $y = x^2 + 3x - 5$ (10) $y = x^2 + 5x + 4$

二次関数二次方程式解の公式因数分解
2025/7/29

与えられた2次関数を平方完成させる問題です。具体的には、以下の10個の2次関数をそれぞれ平方完成させます。 (1) $y = x^2 - x + 5$ (2) $y = x^2 + 2x - 1$ (...

二次関数平方完成
2025/7/29

問題は、与えられた二次関数を平方完成させることです。具体的には、以下の2つの問題があります。 (7) $y = x^2 - 8x + 21$ (9) $y = x^2 - 4x + 5$

二次関数平方完成二次関数の標準形
2025/7/29

与えられた二次関数を平方完成する問題です。具体的には、以下の3つの関数を平方完成します。 (6) $y = x^2 + 8x + 11$ (8) $y = x^2 + 2x - 1$ (10) $y ...

二次関数平方完成関数
2025/7/29

与えられた2次関数 $y = x^2 + 8x + 15$ を平方完成する問題です。

二次関数平方完成
2025/7/29

与えられた二次関数 $y = x^2 - 2x + 3$ を平方完成の形に変形する問題です。

二次関数平方完成関数の変形
2025/7/29

与えられた二次関数 $y = x^2 - 2x + 3$ を平方完成させる問題です。

二次関数平方完成関数のグラフ
2025/7/29

ベクトル $a$ と $b$ が与えられたとき、外積 $a \times b$ を求める問題です。$i, j, k$ はそれぞれ $x, y, z$ 方向の単位ベクトルです。

ベクトル外積線形代数ベクトルの演算
2025/7/29