4人が100点満点のテストを受け、最高点が80点、最低点が60点であったとき、平均点が小数第二位を四捨五入した値として、選択肢の中からあり得るものを一つ選ぶ問題です。テストの得点は整数です。

算数平均四捨五入整数
2025/8/2

1. 問題の内容

4人が100点満点のテストを受け、最高点が80点、最低点が60点であったとき、平均点が小数第二位を四捨五入した値として、選択肢の中からあり得るものを一つ選ぶ問題です。テストの得点は整数です。

2. 解き方の手順

4人の得点の合計をSS、平均点をAAとします。
平均点AAは、A=S4A = \frac{S}{4}で求められます。
また、各個人の点数は60点以上80点以下の整数です。
平均点の候補それぞれに対して、合計点が整数になるかどうかを検証します。四捨五入前の平均点は、選択肢の値の±0.05の範囲にあります。つまり、選択肢の値をxxとすると、x0.05A<x+0.05x-0.05 \le A < x+0.05です。したがって、4(x0.05)S<4(x+0.05)4(x-0.05) \le S < 4(x+0.05)となります。ここで、SSは整数でなければなりません。
a. A=63.5A=63.5の場合:
4(63.50.05)S<4(63.5+0.05)4(63.5 - 0.05) \le S < 4(63.5 + 0.05)
4(63.45)S<4(63.55)4(63.45) \le S < 4(63.55)
253.8S<254.2253.8 \le S < 254.2
SSは整数なので、S=254S = 254
この時、4人の合計点が254点になる可能性を考えます。
4人の合計点が254点になるためには、4人全員が最低点の60点だった場合、合計は60×4=24060 \times 4 = 240点です。また、最高点の80点を取った人がいるので、残りの3人は60点以上80点以下である必要があります。
例えば、80+60+60+54=25480 + 60 + 60 + 54 = 254ですが、54点はありえません。
また、80+71+71+32=25480 + 71 + 71 + 32 = 254ですが、32点はありえません。
よってあり得ます。
例:80 + 67 + 54+53 = 254 254/4 = 63.5
b. A=68.1A=68.1の場合:
4(68.10.05)S<4(68.1+0.05)4(68.1 - 0.05) \le S < 4(68.1 + 0.05)
4(68.05)S<4(68.15)4(68.05) \le S < 4(68.15)
272.2S<272.6272.2 \le S < 272.6
SSは整数なので、S=273S = 273
例えば、80+60+60+73=27380 + 60 + 60 + 73 = 273
よって、平均は273/4=68.25273 / 4 = 68.25となり、四捨五入すると68.3となるため、不適です。
c. A=70.4A=70.4の場合:
4(70.40.05)S<4(70.4+0.05)4(70.4 - 0.05) \le S < 4(70.4 + 0.05)
4(70.35)S<4(70.45)4(70.35) \le S < 4(70.45)
281.4S<281.8281.4 \le S < 281.8
SSは整数なので、S=282S = 282
例えば、60+80+71+71=28260 + 80 + 71 + 71 = 282
平均は 282/4=70.5282 / 4 = 70.5 となり、四捨五入すると70.5となるため不適です。
d. A=73.8A=73.8の場合:
4(73.80.05)S<4(73.8+0.05)4(73.8 - 0.05) \le S < 4(73.8 + 0.05)
4(73.75)S<4(73.85)4(73.75) \le S < 4(73.85)
295S<295.4295 \le S < 295.4
SSは整数なので、S=295S = 295
例えば、70+70+77+78=29570 + 70 + 77 + 78 = 295
平均は 295/4=73.75295/4 = 73.75 四捨五入すると、73.8になるためあり得ます。
e. A=76.0A=76.0の場合:
4(76.00.05)S<4(76.0+0.05)4(76.0 - 0.05) \le S < 4(76.0 + 0.05)
4(75.95)S<4(76.05)4(75.95) \le S < 4(76.05)
303.8S<304.2303.8 \le S < 304.2
SSは整数なので、S=304S = 304
例えば、80+80+72+72=30480+80+72+72 = 304
平均は 304/4=76304/4 = 76
よってあり得ます。
したがって、可能性のあるものはa,d,eです。最も適当なものを選ぶ必要があります。
もし4人が60,60,80,60だった場合、平均は65なので、63.5はあり得ません。平均点は60以上80以下なのでありえます。
もし、4人が80,80,80,80の場合、平均点は80です。
四捨五入を考慮すると、平均点が取り得る値は、60 <= x <= 80 です。
この中で最も適当なものを選びます。
それぞれの選択肢で、四捨五入される元の値を考えます。
a:63.5となるためには、63.45以上63.55未満である必要があります。
b:68.1となるためには、68.05以上68.15未満である必要があります。
c:70.4となるためには、70.35以上70.45未満である必要があります。
d:73.8となるためには、73.75以上73.85未満である必要があります。
e:76.0となるためには、75.95以上76.05未満である必要があります。
a 4人の合計は、253.8~254.2なので、254となる可能性がある。254を4で割ると63.5
b 4人の合計は、272.2~272.6なので、273となる可能性がある。273を4で割ると68.25なので、四捨五入すると68.3となり、適さない。
c 4人の合計は、281.4~281.8なので、282となる可能性がある。282を4で割ると70.5なので、四捨五入すると70.5となり、適さない。
d 4人の合計は、295.0~295.4なので、295となる可能性がある。295を4で割ると73.75なので、四捨五入すると73.8となり、適する。
e 4人の合計は、303.8~304.2なので、304となる可能性がある。304を4で割ると76.0となり、適する。
a,d,eの中で、最もあり得そうなのは、テストの点数が平均的に分布しているd,eが良いでしょう。eは全員が80点に近いので、dが最も適しているでしょう。

3. 最終的な答え

d

「算数」の関連問題

循環小数 $0.135$ を分数で表すと、$\frac{オ}{カキ}$ である。オとカキに当てはまる数字を答える問題です。

分数循環小数約分
2025/8/2

循環小数 $0.\dot{5}$ を分数で表すと、$\frac{ウ}{エ}$ である。ウとエに当てはまる数字を答える問題です。

分数循環小数
2025/8/2

あすかさんの学校の今年の人数は45人です。去年の人数は40人です。今年の人数は去年の人数の何%か求めよ。

割合百分率計算
2025/8/2

あすかさんの学校の今年の人数は451人です。去年の人数は440人です。今年の人数は去年の人数の何%かを求める問題です。

割合百分率計算
2025/8/2

定員400人のフェリーの乗客が300人であるとき、このフェリーのこみ具合を百分率で表すと何%になるか。

割合百分率
2025/8/2

定員が60人のバスがあります。こみぐあいが130%のとき、このバスには何人乗っていますか?

割合パーセント
2025/8/2

0, 1, 2, 3, 4 の5枚のカードから2枚を選んで並べ、2桁の整数を作るとき、奇数は何通りできるか。

場合の数整数奇数順列
2025/8/2

与えられた10個の比例式を解き、$x$, $t$, $b$, $n$ の値を求める問題です。

比例式方程式
2025/8/2

与えられた比例式について、$x$, $y$, $a$, $t$ の値を求めます。

比例式方程式
2025/8/2

問題は、分数のかけ算です。 $\frac{2}{5} \div 2 = \frac{\boxed{ア}}{\boxed{イ}}$ の $\boxed{ア}$と$\boxed{イ}$に当てはまる数を答え...

分数計算割り算約分
2025/8/2