与えられた比例式について、$x$, $y$, $a$, $t$ の値を求めます。算数比例式比方程式2025/8/2はい、承知いたしました。比例式の問題を解きます。1. 問題の内容与えられた比例式について、xxx, yyy, aaa, ttt の値を求めます。2. 解き方の手順比例式 a:b=c:da:b = c:da:b=c:d は、ad=bcad = bcad=bc と変形できます。これを利用して各式を解きます。(1) 6:7=8:(x−1)6:7 = 8:(x-1)6:7=8:(x−1)6(x−1)=7⋅86(x-1) = 7 \cdot 86(x−1)=7⋅86x−6=566x - 6 = 566x−6=566x=626x = 626x=62x=626=313x = \frac{62}{6} = \frac{31}{3}x=662=331(2) 7:(x+2)=4:37:(x+2) = 4:37:(x+2)=4:37⋅3=4(x+2)7 \cdot 3 = 4(x+2)7⋅3=4(x+2)21=4x+821 = 4x + 821=4x+84x=134x = 134x=13x=134x = \frac{13}{4}x=413(3) (x−8):9=9:8(x-8):9 = 9:8(x−8):9=9:88(x−8)=9⋅98(x-8) = 9 \cdot 98(x−8)=9⋅98x−64=818x - 64 = 818x−64=818x=1458x = 1458x=145x=1458x = \frac{145}{8}x=8145(4) 1:2=(5−x):91:2 = (5-x):91:2=(5−x):91⋅9=2(5−x)1 \cdot 9 = 2(5-x)1⋅9=2(5−x)9=10−2x9 = 10 - 2x9=10−2x2x=12x = 12x=1x=12x = \frac{1}{2}x=21(5) (x−6):4=3:2(x-6):4 = 3:2(x−6):4=3:22(x−6)=4⋅32(x-6) = 4 \cdot 32(x−6)=4⋅32x−12=122x - 12 = 122x−12=122x=242x = 242x=24x=12x = 12x=12(6) (3−x):2=1:2(3-x):2 = 1:2(3−x):2=1:22(3−x)=2⋅12(3-x) = 2 \cdot 12(3−x)=2⋅16−2x=26-2x = 26−2x=2−2x=−4-2x = -4−2x=−4x=2x = 2x=2(7) 1:2=1:(y−1)1:2 = 1:(y-1)1:2=1:(y−1)1(y−1)=2⋅11(y-1) = 2 \cdot 11(y−1)=2⋅1y−1=2y-1 = 2y−1=2y=3y = 3y=3(8) 8:7=2:(8−a)8:7 = 2:(8-a)8:7=2:(8−a)8(8−a)=7⋅28(8-a) = 7 \cdot 28(8−a)=7⋅264−8a=1464 - 8a = 1464−8a=14−8a=−50-8a = -50−8a=−50a=508=254a = \frac{50}{8} = \frac{25}{4}a=850=425(9) 1:2=7:(y−9)1:2 = 7:(y-9)1:2=7:(y−9)1(y−9)=2⋅71(y-9) = 2 \cdot 71(y−9)=2⋅7y−9=14y-9 = 14y−9=14y=23y = 23y=23(10) (7−t):6=3:4(7-t):6 = 3:4(7−t):6=3:44(7−t)=6⋅34(7-t) = 6 \cdot 34(7−t)=6⋅328−4t=1828 - 4t = 1828−4t=18−4t=−10-4t = -10−4t=−10t=104=52t = \frac{10}{4} = \frac{5}{2}t=410=253. 最終的な答え(1) x=313x = \frac{31}{3}x=331(2) x=134x = \frac{13}{4}x=413(3) x=1458x = \frac{145}{8}x=8145(4) x=12x = \frac{1}{2}x=21(5) x=12x = 12x=12(6) x=2x = 2x=2(7) y=3y = 3y=3(8) a=254a = \frac{25}{4}a=425(9) y=23y = 23y=23(10) t=52t = \frac{5}{2}t=25