The problem provides the definition of the generating function $W^{(s)}(x, t)$ for the higher-order Gauss Fibonacci polynomials. It then attempts to derive an expression for $W^{(s)}(x, t)$ in terms of $\alpha^{(s)}(x)$ and $\beta^{(s)}(x)$, and states, after some calculations, the final expression for $W^{(s)}(x, t)$.

AnalysisGenerating FunctionsFibonacci PolynomialsSeriesComplex NumbersGeometric Series
2025/3/11

1. Problem Description

The problem provides the definition of the generating function W(s)(x,t)W^{(s)}(x, t) for the higher-order Gauss Fibonacci polynomials. It then attempts to derive an expression for W(s)(x,t)W^{(s)}(x, t) in terms of α(s)(x)\alpha^{(s)}(x) and β(s)(x)\beta^{(s)}(x), and states, after some calculations, the final expression for W(s)(x,t)W^{(s)}(x, t).

2. Solution Steps

We are given that
W(s)(x,t)=n=0GFn(s)(x)tnW^{(s)}(x, t) = \sum_{n=0}^{\infty} GF_n^{(s)}(x)t^n
and
n=0GFn(s)(x)tn=n=0(Fn(s)(x)+iFn1(s)(x))tn\sum_{n=0}^{\infty} GF_n^{(s)}(x) t^n = \sum_{n=0}^{\infty} (F_n^{(s)}(x) + iF_{n-1}^{(s)}(x))t^n
=1α(s)(x)β(s)(x)(i+α(s)(x)α(s)(x)n=0(α(s)(x)t)ni+β(s)(x)β(s)(x)n=0(β(s)(x)t)n)= \frac{1}{\alpha^{(s)}(x) - \beta^{(s)}(x)} \left(\frac{i + \alpha^{(s)}(x)}{\alpha^{(s)}(x)} \sum_{n=0}^{\infty} (\alpha^{(s)}(x)t)^n - \frac{i + \beta^{(s)}(x)}{\beta^{(s)}(x)} \sum_{n=0}^{\infty} (\beta^{(s)}(x)t)^n \right)
Using the geometric series formula n=0rn=11r\sum_{n=0}^{\infty} r^n = \frac{1}{1-r} for r<1|r| < 1, we obtain
=1α(s)(x)β(s)(x)(i+α(s)(x)α(s)(x)(1α(s)(x)t)i+β(s)(x)β(s)(x)(1β(s)(x)t))= \frac{1}{\alpha^{(s)}(x) - \beta^{(s)}(x)} \left( \frac{i + \alpha^{(s)}(x)}{\alpha^{(s)}(x)(1 - \alpha^{(s)}(x)t)} - \frac{i + \beta^{(s)}(x)}{\beta^{(s)}(x)(1 - \beta^{(s)}(x)t)} \right)
After some calculations (which are not shown), the expression simplifies to
W(s)(x,t)=(1)s(i+(iLs(x)+(1)s)t)1Ls(x)t+(1)st2W^{(s)}(x, t) = \frac{(-1)^s(-i + (iL_s(x) + (-1)^s)t)}{1 - L_s(x)t + (-1)^s t^2}

3. Final Answer

W(s)(x,t)=(1)s(i+(iLs(x)+(1)s)t)1Ls(x)t+(1)st2W^{(s)}(x, t) = \frac{(-1)^s(-i + (iL_s(x) + (-1)^s)t)}{1 - L_s(x)t + (-1)^s t^2}

Related problems in "Analysis"

We are given the function $f(x) = \frac{x^3}{(x+1)^2}$. The problem asks us to find the domain, inte...

CalculusDerivativesDomainInterceptsCritical PointsInflection PointsAsymptotesCurve Sketching
2025/6/21

The problem consists of multiple limit calculations. (a) $\lim_{h\to 0} \frac{(2+h)^3 - 8}{h}$ (b) $...

LimitsCalculusLimits at InfinityGreatest Integer FunctionTrigonometric Functions
2025/6/21

We are given a function $f(x) = \frac{x+1}{\lfloor 3x-2 \rfloor}$, where $\lfloor x \rfloor$ represe...

DomainContinuityFloor FunctionLimits
2025/6/21

We are given the function $f(x) = 2x - 1 + \ln(\frac{x}{x+1})$. The problem asks us to find the doma...

Function AnalysisDomainLimitsAsymptotesDerivativesMonotonicityExtreme ValuesTable of VariationsOblique AsymptoteRoot FindingApproximation
2025/6/21

The problem consists of three parts: a) Evaluate the limit $\lim_{x\to 2} \frac{|x-2| + x - 2}{x^2 -...

LimitsHyperbolic FunctionsInverse Hyperbolic Functions
2025/6/19

The problem consists of four independent questions: d) Newton's Law of Cooling: The temperature of a...

Differential EquationsNewton's Law of CoolingFunction AnalysisDefinite IntegralFundamental Theorem of CalculusCalculus
2025/6/19

We are given the function $f(x) = \ln(x^2 + x)$. We need to find the domain of $f$, the x-intercepts...

CalculusLimitsDerivativesDomainAsymptotesConcavityGraphingLogarithmic Differentiation
2025/6/19

The problem consists of defining concepts related to functions, determining the truth of statements ...

LimitsContinuityDifferentiabilityEpsilon-Delta DefinitionPiecewise FunctionsCritical NumbersLocal Minima
2025/6/19

The problem involves analyzing the function $f(x) = 2x - 1 + \ln(\frac{x}{x+1})$. It asks to find th...

Function AnalysisDomainLimitsAsymptotesDerivativesMonotonicityCurve SketchingEquation SolvingNumerical Approximation
2025/6/15

The problem asks us to draw the graph of the function $y = \sin^{-1}(-\sin x)$.

TrigonometryInverse Trigonometric FunctionsGraphingPeriodic Functions
2025/6/14