The problem provides the definition of the generating function $W^{(s)}(x, t)$ for the higher-order Gauss Fibonacci polynomials. It then attempts to derive an expression for $W^{(s)}(x, t)$ in terms of $\alpha^{(s)}(x)$ and $\beta^{(s)}(x)$, and states, after some calculations, the final expression for $W^{(s)}(x, t)$.

AnalysisGenerating FunctionsFibonacci PolynomialsSeriesComplex NumbersGeometric Series
2025/3/11

1. Problem Description

The problem provides the definition of the generating function W(s)(x,t)W^{(s)}(x, t) for the higher-order Gauss Fibonacci polynomials. It then attempts to derive an expression for W(s)(x,t)W^{(s)}(x, t) in terms of α(s)(x)\alpha^{(s)}(x) and β(s)(x)\beta^{(s)}(x), and states, after some calculations, the final expression for W(s)(x,t)W^{(s)}(x, t).

2. Solution Steps

We are given that
W(s)(x,t)=n=0GFn(s)(x)tnW^{(s)}(x, t) = \sum_{n=0}^{\infty} GF_n^{(s)}(x)t^n
and
n=0GFn(s)(x)tn=n=0(Fn(s)(x)+iFn1(s)(x))tn\sum_{n=0}^{\infty} GF_n^{(s)}(x) t^n = \sum_{n=0}^{\infty} (F_n^{(s)}(x) + iF_{n-1}^{(s)}(x))t^n
=1α(s)(x)β(s)(x)(i+α(s)(x)α(s)(x)n=0(α(s)(x)t)ni+β(s)(x)β(s)(x)n=0(β(s)(x)t)n)= \frac{1}{\alpha^{(s)}(x) - \beta^{(s)}(x)} \left(\frac{i + \alpha^{(s)}(x)}{\alpha^{(s)}(x)} \sum_{n=0}^{\infty} (\alpha^{(s)}(x)t)^n - \frac{i + \beta^{(s)}(x)}{\beta^{(s)}(x)} \sum_{n=0}^{\infty} (\beta^{(s)}(x)t)^n \right)
Using the geometric series formula n=0rn=11r\sum_{n=0}^{\infty} r^n = \frac{1}{1-r} for r<1|r| < 1, we obtain
=1α(s)(x)β(s)(x)(i+α(s)(x)α(s)(x)(1α(s)(x)t)i+β(s)(x)β(s)(x)(1β(s)(x)t))= \frac{1}{\alpha^{(s)}(x) - \beta^{(s)}(x)} \left( \frac{i + \alpha^{(s)}(x)}{\alpha^{(s)}(x)(1 - \alpha^{(s)}(x)t)} - \frac{i + \beta^{(s)}(x)}{\beta^{(s)}(x)(1 - \beta^{(s)}(x)t)} \right)
After some calculations (which are not shown), the expression simplifies to
W(s)(x,t)=(1)s(i+(iLs(x)+(1)s)t)1Ls(x)t+(1)st2W^{(s)}(x, t) = \frac{(-1)^s(-i + (iL_s(x) + (-1)^s)t)}{1 - L_s(x)t + (-1)^s t^2}

3. Final Answer

W(s)(x,t)=(1)s(i+(iLs(x)+(1)s)t)1Ls(x)t+(1)st2W^{(s)}(x, t) = \frac{(-1)^s(-i + (iL_s(x) + (-1)^s)t)}{1 - L_s(x)t + (-1)^s t^2}

Related problems in "Analysis"

We need to find the average rate of change of the function $f(x) = \frac{x-5}{x+3}$ from $x = -2$ to...

Average Rate of ChangeFunctionsCalculus
2025/4/5

If a function $f(x)$ has a maximum at the point $(2, 4)$, what does the reciprocal of $f(x)$, which ...

CalculusFunction AnalysisMaxima and MinimaReciprocal Function
2025/4/5

We are given the function $f(x) = x^2 + 1$ and we want to determine the interval(s) in which its rec...

CalculusDerivativesFunction AnalysisIncreasing Functions
2025/4/5

We are given the function $f(x) = -2x + 3$. We want to find where the reciprocal function, $g(x) = \...

CalculusDerivativesIncreasing FunctionsReciprocal FunctionsAsymptotes
2025/4/5

We need to find the horizontal asymptote of the function $f(x) = \frac{2x - 7}{5x + 3}$.

LimitsAsymptotesRational Functions
2025/4/5

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1