The problem is to simplify the expression $\sqrt{20} + 5\sqrt{2} - \sqrt{\frac{5}{9}} + \sqrt{50}$.

AlgebraSimplificationRadicalsSquare RootsAlgebraic Expressions
2025/3/11

1. Problem Description

The problem is to simplify the expression 20+5259+50\sqrt{20} + 5\sqrt{2} - \sqrt{\frac{5}{9}} + \sqrt{50}.

2. Solution Steps

First, simplify each term:
20=45=45=25\sqrt{20} = \sqrt{4 \cdot 5} = \sqrt{4} \cdot \sqrt{5} = 2\sqrt{5}
50=252=252=52\sqrt{50} = \sqrt{25 \cdot 2} = \sqrt{25} \cdot \sqrt{2} = 5\sqrt{2}
59=59=53\sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{9}} = \frac{\sqrt{5}}{3}
Now, substitute the simplified terms back into the original expression:
25+5253+522\sqrt{5} + 5\sqrt{2} - \frac{\sqrt{5}}{3} + 5\sqrt{2}
Combine like terms:
(2553)+(52+52)(2\sqrt{5} - \frac{\sqrt{5}}{3}) + (5\sqrt{2} + 5\sqrt{2})
(65353)+(102)(\frac{6\sqrt{5}}{3} - \frac{\sqrt{5}}{3}) + (10\sqrt{2})
553+102\frac{5\sqrt{5}}{3} + 10\sqrt{2}

3. Final Answer

553+102\frac{5\sqrt{5}}{3} + 10\sqrt{2}