The problem is to simplify the expression $\sqrt{20} + 5\sqrt{2} - \sqrt{\frac{5}{9}} + \sqrt{50}$.AlgebraSimplificationRadicalsSquare RootsAlgebraic Expressions2025/3/111. Problem DescriptionThe problem is to simplify the expression 20+52−59+50\sqrt{20} + 5\sqrt{2} - \sqrt{\frac{5}{9}} + \sqrt{50}20+52−95+50.2. Solution StepsFirst, simplify each term:20=4⋅5=4⋅5=25\sqrt{20} = \sqrt{4 \cdot 5} = \sqrt{4} \cdot \sqrt{5} = 2\sqrt{5}20=4⋅5=4⋅5=2550=25⋅2=25⋅2=52\sqrt{50} = \sqrt{25 \cdot 2} = \sqrt{25} \cdot \sqrt{2} = 5\sqrt{2}50=25⋅2=25⋅2=5259=59=53\sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{\sqrt{9}} = \frac{\sqrt{5}}{3}95=95=35Now, substitute the simplified terms back into the original expression:25+52−53+522\sqrt{5} + 5\sqrt{2} - \frac{\sqrt{5}}{3} + 5\sqrt{2}25+52−35+52Combine like terms:(25−53)+(52+52)(2\sqrt{5} - \frac{\sqrt{5}}{3}) + (5\sqrt{2} + 5\sqrt{2})(25−35)+(52+52)(653−53)+(102)(\frac{6\sqrt{5}}{3} - \frac{\sqrt{5}}{3}) + (10\sqrt{2})(365−35)+(102)553+102\frac{5\sqrt{5}}{3} + 10\sqrt{2}355+1023. Final Answer553+102\frac{5\sqrt{5}}{3} + 10\sqrt{2}355+102