The problem is to simplify the expression: $\sqrt[3]{48a^{12}b^6} \cdot \frac{ab}{\sqrt{a^2b^4}}$

AlgebraSimplificationRadicalsExponentsAlgebraic Expressions
2025/6/6

1. Problem Description

The problem is to simplify the expression:
48a12b63aba2b4\sqrt[3]{48a^{12}b^6} \cdot \frac{ab}{\sqrt{a^2b^4}}

2. Solution Steps

First, simplify the cube root term.
48a12b63=86a12b63=236(a4)3(b2)33=2a4b263\sqrt[3]{48a^{12}b^6} = \sqrt[3]{8 \cdot 6 \cdot a^{12} \cdot b^6} = \sqrt[3]{2^3 \cdot 6 \cdot (a^4)^3 \cdot (b^2)^3} = 2a^4b^2\sqrt[3]{6}
Next, simplify the square root term in the denominator.
a2b4=a2(b2)2=ab2\sqrt{a^2b^4} = \sqrt{a^2(b^2)^2} = ab^2
Now, substitute the simplified expressions back into the original expression.
2a4b263abab22a^4b^2\sqrt[3]{6} \cdot \frac{ab}{ab^2}
Now, simplify the fraction.
abab2=1b\frac{ab}{ab^2} = \frac{1}{b}
Substitute this back into the expression:
2a4b2631b2a^4b^2\sqrt[3]{6} \cdot \frac{1}{b}
Finally, simplify the whole expression by canceling out bb:
2a4b632a^4b\sqrt[3]{6}

3. Final Answer

The final answer is 2a4b632a^4b\sqrt[3]{6}.