Factor the expression $3x^6 + 81y^6$.

AlgebraFactorizationPolynomialsSum of CubesAlgebraic Manipulation
2025/6/6

1. Problem Description

Factor the expression 3x6+81y63x^6 + 81y^6.

2. Solution Steps

First, factor out the greatest common factor (GCF) which is

3. $3x^6 + 81y^6 = 3(x^6 + 27y^6)$.

Notice that we have the sum of cubes. We can rewrite the expression inside the parentheses as
x6+27y6=(x2)3+(3y2)3x^6 + 27y^6 = (x^2)^3 + (3y^2)^3.
Recall the sum of cubes formula:
a3+b3=(a+b)(a2ab+b2)a^3 + b^3 = (a+b)(a^2 - ab + b^2).
In this case, we have a=x2a=x^2 and b=3y2b=3y^2.
Applying the sum of cubes formula, we get:
(x2)3+(3y2)3=(x2+3y2)((x2)2(x2)(3y2)+(3y2)2)=(x2+3y2)(x43x2y2+9y4)(x^2)^3 + (3y^2)^3 = (x^2 + 3y^2)((x^2)^2 - (x^2)(3y^2) + (3y^2)^2) = (x^2 + 3y^2)(x^4 - 3x^2y^2 + 9y^4).
Substituting this back into our original expression, we have:
3(x6+27y6)=3(x2+3y2)(x43x2y2+9y4)3(x^6 + 27y^6) = 3(x^2 + 3y^2)(x^4 - 3x^2y^2 + 9y^4).

3. Final Answer

3(x2+3y2)(x43x2y2+9y4)3(x^2+3y^2)(x^4-3x^2y^2+9y^4)