The problem asks to evaluate the expression $\cos(\frac{4\pi}{3}) - \sin(\frac{4\pi}{3})$.

AnalysisTrigonometryTrigonometric FunctionsAngle CalculationUnit Circle
2025/3/12

1. Problem Description

The problem asks to evaluate the expression cos(4π3)sin(4π3)\cos(\frac{4\pi}{3}) - \sin(\frac{4\pi}{3}).

2. Solution Steps

We need to find the values of cos(4π3)\cos(\frac{4\pi}{3}) and sin(4π3)\sin(\frac{4\pi}{3}).
The angle 4π3\frac{4\pi}{3} is in the third quadrant.
We can write 4π3=π+π3\frac{4\pi}{3} = \pi + \frac{\pi}{3}.
cos(4π3)=cos(π+π3)=cos(π3)=12\cos(\frac{4\pi}{3}) = \cos(\pi + \frac{\pi}{3}) = -\cos(\frac{\pi}{3}) = -\frac{1}{2}
sin(4π3)=sin(π+π3)=sin(π3)=32\sin(\frac{4\pi}{3}) = \sin(\pi + \frac{\pi}{3}) = -\sin(\frac{\pi}{3}) = -\frac{\sqrt{3}}{2}
Now we substitute these values into the expression:
cos(4π3)sin(4π3)=12(32)=12+32=312\cos(\frac{4\pi}{3}) - \sin(\frac{4\pi}{3}) = -\frac{1}{2} - (-\frac{\sqrt{3}}{2}) = -\frac{1}{2} + \frac{\sqrt{3}}{2} = \frac{\sqrt{3} - 1}{2}

3. Final Answer

The final answer is 312\frac{\sqrt{3} - 1}{2}.

Related problems in "Analysis"

We need to find the average rate of change of the function $f(x) = \frac{x-5}{x+3}$ from $x = -2$ to...

Average Rate of ChangeFunctionsCalculus
2025/4/5

If a function $f(x)$ has a maximum at the point $(2, 4)$, what does the reciprocal of $f(x)$, which ...

CalculusFunction AnalysisMaxima and MinimaReciprocal Function
2025/4/5

We are given the function $f(x) = x^2 + 1$ and we want to determine the interval(s) in which its rec...

CalculusDerivativesFunction AnalysisIncreasing Functions
2025/4/5

We are given the function $f(x) = -2x + 3$. We want to find where the reciprocal function, $g(x) = \...

CalculusDerivativesIncreasing FunctionsReciprocal FunctionsAsymptotes
2025/4/5

We need to find the horizontal asymptote of the function $f(x) = \frac{2x - 7}{5x + 3}$.

LimitsAsymptotesRational Functions
2025/4/5

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1