We need to find the value of the infinite sum $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n}{n!}$.

AnalysisInfinite SeriesTaylor SeriesExponential FunctionSummation
2025/3/13

1. Problem Description

We need to find the value of the infinite sum
n=1(1)n+12nn!\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n}{n!}.

2. Solution Steps

We know the Taylor series expansion for exe^x is given by:
ex=n=0xnn!e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}
Now, let's consider the sum n=1(1)n+12nn!\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n}{n!}.
We can rewrite (1)n+1(-1)^{n+1} as (1)n-(-1)^n. Then the sum becomes:
n=1(1)n2nn!=n=1(2)nn!\sum_{n=1}^{\infty} -(-1)^n \frac{2^n}{n!} = - \sum_{n=1}^{\infty} \frac{(-2)^n}{n!}
The Taylor series for exe^x starts at n=0n=0. In our case, the sum starts at n=1n=1. Thus,
ex=x00!+n=1xnn!=1+n=1xnn!e^x = \frac{x^0}{0!} + \sum_{n=1}^{\infty} \frac{x^n}{n!} = 1 + \sum_{n=1}^{\infty} \frac{x^n}{n!}
So, n=1xnn!=ex1\sum_{n=1}^{\infty} \frac{x^n}{n!} = e^x - 1
Substituting x=2x = -2, we have:
n=1(2)nn!=e21\sum_{n=1}^{\infty} \frac{(-2)^n}{n!} = e^{-2} - 1
Therefore,
n=1(1)n+12nn!=n=1(2)nn!=(e21)=1e2=11e2\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n}{n!} = - \sum_{n=1}^{\infty} \frac{(-2)^n}{n!} = -(e^{-2} - 1) = 1 - e^{-2} = 1 - \frac{1}{e^2}

3. Final Answer

11e21 - \frac{1}{e^2}

Related problems in "Analysis"

We need to evaluate the definite integral $I = \int_{-4}^{0} \frac{1}{\sqrt{4-x}} dx$.

Definite IntegralSubstitutionIntegration TechniquesCalculus
2025/7/14

We are given the equation $\int \frac{1}{tan(y)} dy = \int x dx$ and asked to solve it.

IntegrationTrigonometric FunctionsIndefinite IntegralsDifferential Equations
2025/7/12

We need to evaluate the limit of the expression $\frac{x-3}{1-\sqrt{4-x}}$ as $x$ approaches $3$.

LimitsCalculusIndeterminate FormsConjugateAlgebraic Manipulation
2025/7/11

We need to evaluate the limit: $\lim_{x\to 3} \frac{x-3}{1 - \sqrt{4-x}}$.

LimitsIndeterminate FormsConjugateRationalization
2025/7/11

We are asked to find the limit of the function $\frac{2x^2 + 3x + 4}{x-1}$ as $x$ approaches 1 from ...

LimitsCalculusFunctions
2025/7/8

The problem asks us to sketch the graphs of two functions: (1) $y = x\sqrt{4-x^2}$ (2) $y = e^{-x} +...

GraphingCalculusDerivativesMaxima and MinimaConcavityInflection PointsDomainSymmetry
2025/7/3

The problem asks to sketch the graph of the function $y = x\sqrt{4 - x^2}$.

CalculusFunction AnalysisDerivativesGraphingDomainCritical PointsLocal Maxima/MinimaOdd Functions
2025/7/3

We are asked to find the sum of the series $\frac{1}{2^2-1} + \frac{1}{4^2-1} + \frac{1}{6^2-1} + \d...

SeriesSummationPartial FractionsTelescoping Series
2025/7/3

The problem asks to evaluate several natural logarithm expressions. The expressions are: 1. $ln(\fra...

LogarithmsNatural LogarithmExponentsLogarithmic Properties
2025/7/3

The problem requires us to analyze a given graph of a function and determine the following: - The in...

Function AnalysisIncreasing and Decreasing IntervalsDomain and Range
2025/7/3