We need to find the value of the infinite sum $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n}{n!}$.

AnalysisInfinite SeriesTaylor SeriesExponential FunctionSummation
2025/3/13

1. Problem Description

We need to find the value of the infinite sum
n=1(1)n+12nn!\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n}{n!}.

2. Solution Steps

We know the Taylor series expansion for exe^x is given by:
ex=n=0xnn!e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}
Now, let's consider the sum n=1(1)n+12nn!\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n}{n!}.
We can rewrite (1)n+1(-1)^{n+1} as (1)n-(-1)^n. Then the sum becomes:
n=1(1)n2nn!=n=1(2)nn!\sum_{n=1}^{\infty} -(-1)^n \frac{2^n}{n!} = - \sum_{n=1}^{\infty} \frac{(-2)^n}{n!}
The Taylor series for exe^x starts at n=0n=0. In our case, the sum starts at n=1n=1. Thus,
ex=x00!+n=1xnn!=1+n=1xnn!e^x = \frac{x^0}{0!} + \sum_{n=1}^{\infty} \frac{x^n}{n!} = 1 + \sum_{n=1}^{\infty} \frac{x^n}{n!}
So, n=1xnn!=ex1\sum_{n=1}^{\infty} \frac{x^n}{n!} = e^x - 1
Substituting x=2x = -2, we have:
n=1(2)nn!=e21\sum_{n=1}^{\infty} \frac{(-2)^n}{n!} = e^{-2} - 1
Therefore,
n=1(1)n+12nn!=n=1(2)nn!=(e21)=1e2=11e2\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n}{n!} = - \sum_{n=1}^{\infty} \frac{(-2)^n}{n!} = -(e^{-2} - 1) = 1 - e^{-2} = 1 - \frac{1}{e^2}

3. Final Answer

11e21 - \frac{1}{e^2}

Related problems in "Analysis"

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1

The problem asks us to evaluate the integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$.

IntegrationDefinite IntegralSubstitutionTrigonometric Substitution
2025/4/1

We are asked to evaluate the definite integral $\int_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}} \fr...

Definite IntegralIntegrationTrigonometric SubstitutionInverse Trigonometric Functions
2025/4/1

We are asked to find the derivative of the function $f(x) = (x+2)^x$ using logarithmic differentiati...

DifferentiationLogarithmic DifferentiationChain RuleProduct RuleDerivatives
2025/4/1

We need to evaluate the integral $\int \frac{e^x}{e^{3x}-8} dx$.

IntegrationCalculusPartial FractionsTrigonometric Substitution
2025/4/1

We are asked to evaluate the integral: $\int \frac{e^{2x}}{e^{3x}-8} dx$

IntegrationCalculusSubstitutionPartial FractionsTrigonometric Substitution
2025/4/1